Nothing Special   »   [go: up one dir, main page]

Skip to main content

Impact of Lossy Image Compression on CAD Support Systems for Colonoscopy

  • Conference paper
  • First Online:
Computer-Assisted and Robotic Endoscopy (CARE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9515))

Included in the following conference series:

Abstract

In a large experimental study, the impact of lossy image compression standards on CAD support systems based on texure classification is assessed using colonoscopic imagery as an example. Results clearly indicate that (1) it is important to compress both training and evaluation data involved in the classification process, (2) there is a big difference if initial data is precompressed or uncompressed, and (3) in the latter case significant improvements in terms of classification accuracy may be achieved, even and especially in case of high compression ratios. Moreover it is found that compression efficiency in terms of image quality metrics and/or human perception is not correlated with the impact compression has on texture classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belloulata, K., Baskurt, A., Benoit-Cattin, H., Prost, R.: Fractal coding of medical images. In: Kim, Y. (ed.) Medical Imaging 1996: Image Display. SPIE Proceedings, vol. 2707, pp. 598–609. SPIE, Newport Beach (1996)

    Chapter  Google Scholar 

  2. Chen, M., Zhang, S., Karim, M.: Modification of standard image compression methods for correlation-based pattern recognition. Opt. Eng. 43(8), 1723–1730 (2004)

    Article  Google Scholar 

  3. Cosman, P.C., et al.: Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proc. IEEE 82(6), 919–932 (1994)

    Article  Google Scholar 

  4. Delac, K., et al.: Image compression in face recognition - a literature survey. In: Delac, K., et al. (ed.) Recent Advances in Face Recognition, pp. 236–250. I-Tech (2008)

    Google Scholar 

  5. Garcia-Vichez, F., Munoz-Mari, J., Zortea, M., Blanes, I., Gonzales-Ruiz, V., Camps-Valls, G.: On the impact of lossy compression on hyperspectral image classification and unmixing. IEEE Geosci. Remote Sens. Lett. 8(2), 253–257 (2011). doi:10.1109/LGRS.2010.2062484

    Article  Google Scholar 

  6. Häfner, M., et al.: Computer-aided classification of zoom-endoscopical images using fourier filters. IEEE Trans. Inf. Technol. Biomed. 14(4), 958–970 (2010)

    Article  Google Scholar 

  7. Hämmerle-Uhl, J., Karnutsch, M., Uhl, A.: Evolutionary optimisation of JPEG2000 part 2 wavelet packet structures for polar iris image compression. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part I. LNCS, vol. 8258, pp. 391–398. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Jeong, G.M., Kim, C., Ahn, H.S., Ahn, B.J.: JPEG quantization table design for face images and its application to face recognition. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E69–A(11), 2990–2993 (2006)

    Article  Google Scholar 

  9. Kato, S., et al.: Magnifying colonoscopy as a non-biopsy technique for differential diagnosis of non-neoplastic and neoplastic lesions. World J. Gastroenterol. 12(9), 1416–1420 (2006)

    Article  Google Scholar 

  10. Konrad, M., Stögner, H., Uhl, A.: Custom design of JPEG quantisation tables for compressing iris polar images to improve recognition accuracy. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1091–1101. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Konsti, J., et al.: Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium. Diagn. Pathol. 7(29) (2012). doi:10.1186/1746-1596-7-29

  12. Lau, W.L., Li, Z.L., Lam, W.K.: Effects of JPEG compression on image classification. Int. J. Remote Sens. 24(7), 1535–1544 (2003)

    Article  Google Scholar 

  13. Panych, L.: Theoretical comparison of Fourier and wavelet encoding in magnetic resonance imaging. IEEE Trans. Med. imaging 15(2), 141–153 (1997)

    Article  Google Scholar 

  14. Rabenstein, T., et al.: Tele-endoscopy: influence of data compression, bandwidth and simulated impairments on the usability of real-time digital video endoscopy transmissions for medical diagnoses. Endoscopy 34(9), 703–710 (2002)

    Article  Google Scholar 

  15. Rathgeb, C., et al.: Effects of severe image compression on iris segmentation performance. In: Proceedings of the IAPR/IEEE International Joint Conference on Biometrics (IJCB 2014) (2014)

    Google Scholar 

  16. Santalla, H., et al.: Effects on MR images compression in tissue classification quality. J. Phys. Conf. Ser. 90(1) (2007)

    Google Scholar 

  17. Schoeffmann, K., et al.: Investigation of the impact of compression on the perceptional quality of laparoscopic videos. In: Proceedings of the 27th International Symposium on Computer-Based Medical Systems (CBMS 2014), pp. 153–158 (2014)

    Google Scholar 

  18. Tamaki, T., et al.: Computer-aided colorectal tumor classification in nbi endoscopy using local features. Med. Image Anal. 17(1), 78–100 (2013)

    Article  Google Scholar 

  19. Wong, S., et al.: Radiologic image compression - a review. Proc. IEEE 83(2), 194–219 (1995)

    Article  Google Scholar 

  20. Zabala, A., Pons, X.: Effects of lossy compression on remote sensing image classification of forest areas. Int. J. Appl. Earth Obs. Geoinf. 13(1), 43–51 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Uhl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Elmer, P. et al. (2016). Impact of Lossy Image Compression on CAD Support Systems for Colonoscopy. In: Luo, X., Reichl, T., Reiter, A., Mariottini, GL. (eds) Computer-Assisted and Robotic Endoscopy. CARE 2015. Lecture Notes in Computer Science(), vol 9515. Springer, Cham. https://doi.org/10.1007/978-3-319-29965-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29965-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29964-8

  • Online ISBN: 978-3-319-29965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics