Nothing Special   »   [go: up one dir, main page]

Skip to main content

Prediction-Based Visual Servo Control

  • Conference paper
  • First Online:
Challenges in Automation, Robotics and Measurement Techniques (ICA 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 440))

Included in the following conference series:

  • 1933 Accesses

Abstract

In service robotics manipulator trajectories must be generated on the run, basing on the information gathered by sensors. This article discusses visual servoing applied to robot arm control, in a task of following a moving object with robot arm. The paper proposes a control system structure based on adaptive Kalman filter prediction algorithm and manipulator joint trajectory generator. Moreover, it shows how to build it using agent-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Staniak, M., Winiarski, T., Zieliński, C.: Parallel visual-force control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS ’08 (2008)

    Google Scholar 

  2. Sanderson, A., Weiss, L.: Adaptive visual servo control of robots. In: Pugh, A. (ed.) Robot Vision, International Trends in Manufacturing Technology. pp. 107–116. Springer, Berlin (1983)

    Google Scholar 

  3. Janabi-Sharifi, F., Marey, M.: A kalman-filter-based method for pose estimation in visual servoing. IEEE Trans. Robot. 26(5), 939–947 (2010)

    Article  Google Scholar 

  4. Gortcheva, E., Garrido, R., Gonzalez, E., Carvallo, A.: Predicting a moving object position for visual servoing: theory and experiments. Int. J. Adapt. Control Signal Process. 15(4), 377–392 (2001)

    Article  MATH  Google Scholar 

  5. Zieliński, C., Winiarski, T.: Motion generation in the MRROC++ robot programming framework. Int. J. Robot. Res. 29(4), 386–413 (2010)

    Article  Google Scholar 

  6. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann (2014)

    Google Scholar 

  7. Zieliński, C., Kornuta, T., Winiarski, T.: A systematic method of designing control systems for service and field robots. In: 19th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR’2014, IEEE, pp. 1–14

    Google Scholar 

  8. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall (2002)

    Google Scholar 

  9. Cuevas, E.V., Zaldivar, D., Rojas, R., et al.: Kalman filter for vision tracking (2005)

    Google Scholar 

  10. Moose, R., Gholson, N.: Adaptive tracking of abruptly maneuvering targets. In: 1976 IEEE Conference on Decision and Control Including the 15th Symposium on Adaptive Processes, pp. 804–808 (1976)

    Google Scholar 

  11. Kiruluta, A., Eizenman, E., Pasupathy, S.: Predictive head movement tracking using a kalman filter. IEEE Trans. Syst. Man Cybern. Part B Cybern. 27(2), 326–331 (1997)

    Article  Google Scholar 

  12. Gutman, P.O., Velger, M.: Tracking targets using adaptive kalman filtering. IEEE Trans. Aerosp. Electron. Syst. 26(5), 691–699 (1990)

    Article  Google Scholar 

  13. Erkorkmaz, K., Altintas, Y.: High speed cnc system design. part i: jerk limited trajectory generation and quintic spline interpolation. Int. J. Mach. Tools Manuf. 41(9), 1323–1345 (2001)

    Article  Google Scholar 

  14. Kroger, T., Tomiczek, A., Wahl, F.M.: Towards on-line trajectory computation. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 736–741. IEEE (2006)

    Google Scholar 

  15. Ramos, F., Gajamohan, M., Huebel, N., D’Andrea, R.: Time-optimal Online Trajectory Generator for Robotic Manipulators. Eidgenössische Technische Hochschule Zürich, Institute for Dynamic Systems and Control (2013)

    Google Scholar 

  16. Wilkowski, A., Kornuta, T., Kasprzak, W.: Point-Based Object Recognition in RGB-D Images. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S. (eds.) Proceedings of the 7th IEEE International Conference Intelligent Systems IS’2014 of Advances in Intelligent Systems and Computing (AISC), vol. 323, pp. 593–604. Springer (2015)

    Google Scholar 

  17. Stefańczyk, M., Walçcki, M.: Localization of essential door features for mobile manipulation. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M.,(eds.) Recent Advances in Automation, Robotics and Measuring Techniques of Advances in Intelligent Systems and Computing (AISC), vol. 267, pp. 487–496. Springer (2014)

    Google Scholar 

  18. Stefańczyk, M., Kornuta, T.: Handling of asynchronous data flow in robot perception subsystems. In: Simulation, Modeling, and Programming for Autonomous Robots, vol. 8810 of Lecture Notes in Computer Science, pp. 509–520. Springer (2014)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by The National Centre for Research and Development grant no. PBS1/A3/8/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Walȩcki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Walȩcki, M., Zieliński, C. (2016). Prediction-Based Visual Servo Control. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Challenges in Automation, Robotics and Measurement Techniques. ICA 2016. Advances in Intelligent Systems and Computing, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-29357-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29357-8_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29356-1

  • Online ISBN: 978-3-319-29357-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics