Abstract
In service robotics manipulator trajectories must be generated on the run, basing on the information gathered by sensors. This article discusses visual servoing applied to robot arm control, in a task of following a moving object with robot arm. The paper proposes a control system structure based on adaptive Kalman filter prediction algorithm and manipulator joint trajectory generator. Moreover, it shows how to build it using agent-based approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Staniak, M., Winiarski, T., Zieliński, C.: Parallel visual-force control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS ’08 (2008)
Sanderson, A., Weiss, L.: Adaptive visual servo control of robots. In: Pugh, A. (ed.) Robot Vision, International Trends in Manufacturing Technology. pp. 107–116. Springer, Berlin (1983)
Janabi-Sharifi, F., Marey, M.: A kalman-filter-based method for pose estimation in visual servoing. IEEE Trans. Robot. 26(5), 939–947 (2010)
Gortcheva, E., Garrido, R., Gonzalez, E., Carvallo, A.: Predicting a moving object position for visual servoing: theory and experiments. Int. J. Adapt. Control Signal Process. 15(4), 377–392 (2001)
Zieliński, C., Winiarski, T.: Motion generation in the MRROC++ robot programming framework. Int. J. Robot. Res. 29(4), 386–413 (2010)
Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann (2014)
Zieliński, C., Kornuta, T., Winiarski, T.: A systematic method of designing control systems for service and field robots. In: 19th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR’2014, IEEE, pp. 1–14
Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall (2002)
Cuevas, E.V., Zaldivar, D., Rojas, R., et al.: Kalman filter for vision tracking (2005)
Moose, R., Gholson, N.: Adaptive tracking of abruptly maneuvering targets. In: 1976 IEEE Conference on Decision and Control Including the 15th Symposium on Adaptive Processes, pp. 804–808 (1976)
Kiruluta, A., Eizenman, E., Pasupathy, S.: Predictive head movement tracking using a kalman filter. IEEE Trans. Syst. Man Cybern. Part B Cybern. 27(2), 326–331 (1997)
Gutman, P.O., Velger, M.: Tracking targets using adaptive kalman filtering. IEEE Trans. Aerosp. Electron. Syst. 26(5), 691–699 (1990)
Erkorkmaz, K., Altintas, Y.: High speed cnc system design. part i: jerk limited trajectory generation and quintic spline interpolation. Int. J. Mach. Tools Manuf. 41(9), 1323–1345 (2001)
Kroger, T., Tomiczek, A., Wahl, F.M.: Towards on-line trajectory computation. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 736–741. IEEE (2006)
Ramos, F., Gajamohan, M., Huebel, N., D’Andrea, R.: Time-optimal Online Trajectory Generator for Robotic Manipulators. Eidgenössische Technische Hochschule Zürich, Institute for Dynamic Systems and Control (2013)
Wilkowski, A., Kornuta, T., Kasprzak, W.: Point-Based Object Recognition in RGB-D Images. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S. (eds.) Proceedings of the 7th IEEE International Conference Intelligent Systems IS’2014 of Advances in Intelligent Systems and Computing (AISC), vol. 323, pp. 593–604. Springer (2015)
Stefańczyk, M., Walçcki, M.: Localization of essential door features for mobile manipulation. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M.,(eds.) Recent Advances in Automation, Robotics and Measuring Techniques of Advances in Intelligent Systems and Computing (AISC), vol. 267, pp. 487–496. Springer (2014)
Stefańczyk, M., Kornuta, T.: Handling of asynchronous data flow in robot perception subsystems. In: Simulation, Modeling, and Programming for Autonomous Robots, vol. 8810 of Lecture Notes in Computer Science, pp. 509–520. Springer (2014)
Acknowledgments
The authors gratefully acknowledge the support of this work by The National Centre for Research and Development grant no. PBS1/A3/8/2012.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Walȩcki, M., Zieliński, C. (2016). Prediction-Based Visual Servo Control. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Challenges in Automation, Robotics and Measurement Techniques. ICA 2016. Advances in Intelligent Systems and Computing, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-29357-8_60
Download citation
DOI: https://doi.org/10.1007/978-3-319-29357-8_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29356-1
Online ISBN: 978-3-319-29357-8
eBook Packages: EngineeringEngineering (R0)