Nothing Special   »   [go: up one dir, main page]

Skip to main content

Extended LQR: Locally-Optimal Feedback Control for Systems with Non-Linear Dynamics and Non-Quadratic Cost

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 114))

Abstract

We present Extended LQR, a novel approach for locally-optimal control for robots with non-linear dynamics and non-quadratic cost functions. Our formulation is conceptually different from existing approaches, and is based on the novel concept of LQR-smoothing, which is an LQR-analogue of Kalman smoothing. Our approach iteratively performs both a backward Extended LQR pass, which computes approximate cost-to-go functions, and a forward Extended LQR pass, which computes approximate cost-to-come functions. The states at which the sum of these functions is minimal provide an approximately optimal sequence of states for the control problem, and we use these points to linearize the dynamics and quadratize the cost functions in the subsequent iteration. Our results indicate that Extended LQR converges quickly and reliably to a locally-optimal solution of the non-linear, non-quadratic optimal control problem. In addition, we show that our approach is easily extended to include temporal optimization, in which the duration of a trajectory is optimized as part of the control problem. We demonstrate the potential of our approach on two illustrative non-linear control problems involving simulated and physical differential-drive robots and simulated quadrotor helicopters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bar-Shalom, Y., Li, R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation, Wiley-Interscience, New Jersey (2004)

    Google Scholar 

  2. Bell, B.: The iterated Kalman smoother as a Gauss-Newton method. SIAM J. Optim. 4(3), 626–636 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Betts, J.: Practical methods for optimal control and estimation using nonlinear programming, vol. 19, SIAM (2009)

    Google Scholar 

  4. Bertsekas, D.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (2001)

    Google Scholar 

  5. A. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Google Scholar 

  6. Chen, M.S., Kao, C.Y.: Control of linear time-varying systems using forward Riccati equation. J. Dyn. Syst. Meas. Control 119(3), 536540 (1997)

    Google Scholar 

  7. Fujita, Y., Nakamura, Y., Shiller, Z.: Dual Dijkstra search for paths with different topologies. In: Proceedings of the IEEE International Conference on Robotics and Automation (2003)

    Google Scholar 

  8. Higham, N.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra Appl. 103, 103–118 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jacobsen, D., Mayne, D.: Differential Dynamic Programming. Elsevier, New York (1970)

    Google Scholar 

  10. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  11. Lavalle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  12. Li, W., Todorov, E.: Iterative linear-quadratic regulator design for nonlinear biological movement systems. In: Proceedings of the International Conference on Informatics in Control, Automation and Robotics (2004)

    Google Scholar 

  13. Nocedal, J., Wright, S.: Numerical Optimization. Springer Science+ Business Media, Germany (2006)

    Google Scholar 

  14. Rauch, H., Tung, F., Striebel, C.: Maximum likelihood estimates of linear dynamic systems. AIAA J. 3(8), 1445–1450 (1965)

    Article  MathSciNet  Google Scholar 

  15. Rawlik, K., Toussaint, M., Vijayakumar, S.: An approximate inference approach to temporal optimization in optimal control. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2011–2019 (2010)

    Google Scholar 

  16. Rawlik, K., Toussaint, M., Vijayakumar, S.: On stochastic optimal control and reinforcement learning by approximate inference. In: Proceedings of the Robotics Science and Systems Conference (R:SS 2012), Sydney, Australia (2012)

    Google Scholar 

  17. Schulman, J., Ho, J., Lee, A., Awwal, I., Bradlow, H., Abbeel, P.: Finding locally optimal, collisi-on-free trajectories with sequential convex optimization. In: Robotics: Science and Systems (2013)

    Google Scholar 

  18. Tedrake, R., Manchester, I., Tobenkin, M., Roberts, J.: LQR-trees: Feedback motion planning via sums-of-squares verification. Int. J. Robot. Res. 29(8), 1038–1052 (2010)

    Article  Google Scholar 

  19. Theodorou, E., Tassa, Y., Todorov, E.: Stochastic differential dynamic programming. Proceedings of the American Control Conference (2010)

    Google Scholar 

  20. Todorov, E.: General duality between optimal control and estimation. In: Proceedings of the IEEE Conference on Decision and Control (2008)

    Google Scholar 

  21. Todorov, E., Li, W.: A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: Proceedings of the American Control Conference (2005)

    Google Scholar 

  22. Toussaint, M.: Robot trajectory optimization using approximate inference. In: Proceedings of the International Conference on Machine Learning (2009)

    Google Scholar 

  23. van den Berg, J., Patil, S., Alterovitz, R.: Motion planning under uncertainty using iterative local optimization in belief space. Int. J. Robot. Res. 31(11), 1263–1278 (2012)

    Article  Google Scholar 

  24. Weiss, A., Kolmanovsky, I., Bernstein, D.: Forward-integration Riccati-based output-feedback control of linear time-varying systems. In: American Control Conference (2012)

    Google Scholar 

  25. Whittle, P.: Risk-sensitive linear/quadratic/Gaussian control. Adv. Appl. Prob. 13(4), 764–777 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yakowitz, S.: Algorithms and computational techniques in differential dynamic programming. Control Dyn. Syst. 31, 75–91 (1989)

    Article  Google Scholar 

  27. Zucker, M., Ratliff, N., Dragan, A., Pivtoraiko, M., Klingensmith, M., Dellin, C., Bagnell, J., Srinivasa, S.: CHOMP: Covariant Hamiltonian optimization for motion planning. Int. J. Robot. Res. (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jur van den Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van den Berg, J. (2016). Extended LQR: Locally-Optimal Feedback Control for Systems with Non-Linear Dynamics and Non-Quadratic Cost. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28872-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28870-3

  • Online ISBN: 978-3-319-28872-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics