Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 336))

Abstract

Markov unrecognizability theorem puts an end to the classical program of equipping any combinatorial manifold M with a computable set \(\mathscr {I}_M\) of invariants such that a manifold N is homeomorphic to M iff \(\mathscr {I}_M=\mathscr {I}_N\). To make sense of the statement of the theorem manifolds are replaced by finite strings of symbols for triangulated rational polyhedra, and homeomorphisms are understood as rational PL-homeomorphisms. Thus, objects and arrows undergo a radical transformation—and yet with no essential loss of generality for the original recognition problem. A further restriction on the arrows arises if one views the recognizability problem from the viewpoint of algorithmic complexity theory: here one must take into account the amount of information needed to specify rational polyhedra. We are thus left with the category of rational polyhedra (objects) with integer PL-maps (arrows). A new geometry arises, where the affine group over the integers takes on the same role as the isometry group does in euclidean space. Differently from the category of rational polyhedra with rational PL-maps, a wealth of new geometric computable invariants emerges in this new category. We discuss in particular the rational measure of rational polyhedra. Its role and applicability is amplified by the duality between rational polyhedra and finitely presented MV-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baczyński, M.: Residual implications revisited. Notes Smets-Magrez Theorem, Fuzzy Sets Syst. 145, 267–277 (2004)

    Article  MATH  Google Scholar 

  2. Baczyński, M., Jayaram, B.: (S, N)- and R-implications: a state-of-the-art survey. Fuzzy Sets Syst. 159, 1836–1859 (2008)

    Article  MATH  Google Scholar 

  3. Baker, K.A.: Free vector lattices. Can. J. Math. 20, 58–66 (1968)

    Article  MATH  Google Scholar 

  4. Beynon, W.M.: On rational subdivisions of polyhedra with rational vertices. Can. J. Math. 29, 238–242 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beynon, W.M.: Applications of duality in the theory of finitely generated lattice-ordered abelian groups. Can. J. Math. 29, 243–254 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabrer, L.M.: Simplicial geometry of unital lattice-ordered abelian groups. Forum Math. 27, 1309–1344 (2015). doi:10.1515/forum-2011-0131

    Article  MathSciNet  Google Scholar 

  7. Cabrer, L.M.: Rational simplicial geometry and projective lattice-ordered abelian groups. arXiv:1405.7118v1 [math.RA] 28 May 2014

  8. Cabrer, L.M., Mundici, D.: Rational polyhedra and projective lattice-ordered abelian groups with order unit. Commun. Contemp. Math. 14(3), 1250017 (20 pages) (2012). doi:10.1142/S0219199712500174

    Google Scholar 

  9. Cabrer, L.M., Mundici, D.: Classifying orbits of the affine group over the integers, to appear in Ergodic Theory Dyn. Syst. doi:10.1017/etds.2015.45

    Google Scholar 

  10. Caramello, O., Russo, A.C.: The Morita-equivalence between MV-algebras and lattice-ordered abelian groups with strong unit. J. Algebra 422, 752–787 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, vol. 7. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  12. Engelking, R.: General Topology, Revised and completed edition, Sigma Series in Pure Mathematics, vol. 6. Heldermann Verlag, Berlin (1989)

    Google Scholar 

  13. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  14. Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Springer, New York (1996)

    Book  MATH  Google Scholar 

  15. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  16. Fodor, J., Roubens, M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)

    Book  Google Scholar 

  17. Glass, A.M.W., Madden, J.J.: The word problem versus the isomorphism problem. J. Lond. Math. Soc. (2), 30, 53–61 (1984)

    Google Scholar 

  18. Hatcher, A., Algebraic Topology. Cambridge University Press (2001)

    Google Scholar 

  19. Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, 23, pp. 30–50 (1930). English translation: Investigations into the Sentential Calculus, Chapter IV. In: A. Tarski, Logic, Semantics, Metamathematics. Clarendon Press, Oxford (1956). Reprinted: Hackett, Indianapolis (1983)

    Google Scholar 

  20. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  21. Marra, V., Spada, L.: Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras. Ann. Pure Appl. Logic 164, 192–210 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marra, V., Spada, L.: Two isomorphism criteria for directed colimits. arXiv:1312.0432v1, 2 Dec 2013

  23. Menu, J., Pavelka, J.: A note on tensor products on the unit interval. Comment. Math. Univ. Carol. 17, 71–83 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Morelli, R.: The birational geometry of toric varieties. J. Algebraic Geom. 5, 751–782 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Mundici, D.: Interpretation of AF \(C^{*}\)-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mundici, D.: The Haar theorem for lattice-ordered abelian groups with order-unit. Discret. Contin. Dyn. Syst. 21, 537–549 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mundici, D.: Advanced Łukasiewicz calculus and MV-algebras. Trends in Logic, vol. 35. Springer, Berlin (2011)

    Google Scholar 

  28. Mundici, D.: Invariant measure under the affine group over \(\mathbb{Z},\) combinatorics. Probab. Comput. 23, 248–268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Oda, T.: Convex bodies and algebraic geometry. Convex Bodies and Algebraic Geometry. Springer, New York (1988)

    Google Scholar 

  30. Shtan’ko, M.A.: Markov’s theorem and algorithmically non-recognizable combinatorial manifolds, Izvestiya RAN. Ser. Math. 68, 207–224 (2004)

    MathSciNet  Google Scholar 

  31. Smets, P., Magrez, P.: Implication in fuzzy logic. Int. J. Approx. Reason. 1, 327–347 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stallings, J.R.: Lectures on Polyhedral Topology. Tata Institute of Fundamental Research, Mumbay (1967)

    Google Scholar 

  33. Trillas, E., Valverde, L.: On implication and indistinguishability in the setting of fuzzy logic. In: Kacprzyk, J., Yager, R.R. (eds.) Management Decision Support Systems using Fuzzy Sets and Possibility Theory, pp. 198–212. Technical University Rhineland, Cologne (1985)

    Google Scholar 

  34. Whitehead, J.H.C.: On subdivisions of complexes. Math. Proc. Camb. Philos. Soc. 31, 69–75 (1935)

    Article  Google Scholar 

  35. Whitehead, J.H.C.: Simplicial spaces, nuclei and \(m\)-groups. Proc. Lond. Math. Soc. 45, 243–327 (1939)

    Article  Google Scholar 

  36. Włodarczyk, J.: Decompositions of birational toric maps in blow-ups and blow-downs. Trans. Am. Math. Soc. 349, 373–411 (1997)

    Article  MATH  Google Scholar 

Additional Recent Literature Cited in Section 5

  1. Belluce, L.P., Di Nola, A., Ferraioli, A.R.: MV-semirings and their sheaf representations. Order 30, 165–179 (2013). doi:10.1007/s11083-011-9234-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Belluce, L.P., Di Nola, A., Ferraioli, A.R.: Ideals of MV-semirings and MV-algebras. In: Litvinov, G.L., Sergeev, S.N. (eds.) Tropical and Idempotent Mathematics and Applications. Contemporary Mathematics, vol. 616, pp. 59–76 (2014)

    Google Scholar 

  3. Belluce, L.P., Di Nola, A., Lenzi, G.: On generalizing the Nullstellensatz for MV-algebras. J. Logic Comput. 25, 701–707 (2015). doi:10.1093/logcom/exu042

    Article  MathSciNet  Google Scholar 

  4. Belluce, L.P., Di Nola, A., Lenzi, G.: Algebraic geometry for MV-algebras. J. Symb. Logic 79(4), 1061–1091 (2014)

    Article  MATH  Google Scholar 

  5. Busaniche, M., Mundici, D.: Bouligand-Severi tangents in MV-algebras. Revista Matemática Iberoamericana 30(1), 191–201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabrer, L.M.: Bouligand-Severi \(k\)-tangents and strongly semisimple MV-algebras. J. Algebra 404, 271–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cabrer, L.M.: Exact Unification. arXiv:1410.5583v1 [math.LO] 21 Oct 2014

  8. Cabrer, L.M., Mundici, D.: Interval MV-algebras and generalizations. Int. J. Approx. Reason. 55, 1623–1642 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cabrer, L.M., Mundici, D.M.: Severi-Bouligand tangents, Frenet frames and Riesz spaces. Adv. Appl. Math. 64, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cignoli, R., Marra, V.: Stone duality for real-valued multisets. Forum Math. 24, 1317–1331 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Nola, A., Ferraioli, A.R., Lenzi, G.: Algebraically closed MV-algebras and their sheaf representation. Ann. Pure Appl. Logic 164, 349–355 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Nola, A., Leustean, I.: Łukasiewicz logic and Riesz spaces. Soft Comput. 18, 2349–2363 (2014). doi:10.1007/s00500-014-1348-z

    Article  Google Scholar 

  13. Di Nola, A., Russo, C.: Semiring and semimodule issues in MV-algebras. Comm. Algebra 41, 1017–1048 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Di Nola, A., Russo, C.: MV-semirings as a new perspective on mathematical fuzzy set theory: a survey. arXiv:1102.1999v4, 14 Nov 2014

  15. Dvurečenskij, A.: Quantum structures versus partially ordered groups. Int. J. Theor. Phys. doi:10.1007/s10773-014-2479-9

    Google Scholar 

  16. Fedel, M., Keimel, K., Montagna, F., Roth, W.: Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic. Forum Math. 25, 405–441 (2013). doi:10.1515/FORM.2011.123

    Article  MathSciNet  MATH  Google Scholar 

  17. Flaminio, T., Godo, L., Kroupa, T.: Belief functions on MV-algebras of fuzzy sets: an overview. In: Torra, V., Narukawa, Y., Sugeno, M. (eds.) Non-Additive Measures, Studies in Fuzziness and Soft Computing, vol. 310, pp. 173–200. Springer (2014)

    Google Scholar 

  18. Flaminio, T., Godo, L., Hosni, H.: Coherence in the aggregate: a betting method for belief functions on many-valued events. Int. J. Approx. Reason. 58, 71–86 (2015). doi:10.1016/j.ijar.2015.01.001

    Google Scholar 

  19. Gavalec, M., Nemcová, Z., Sergeev, S.: Tropical linear algebra with the Łukasiewicz T-norm. Fuzzy Sets Syst. 276, 131–148 (2015). doi:10.1016/j.fss.2014.11.008

    Article  Google Scholar 

  20. Gehrke, M., van Gool, S.J., Marra, V.: Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality. J. Algebra 417, 290–332 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hansoul, G., Teheux, B.: Extending Łukasiewicz logics with a modality: algebraic approach to relational semantics. Stud. Logica 101, 505–545 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeřábek, E.E.: The complexity of admissible rules of Łukasiewicz logic. J. Logic Comput. 23, 693–705 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kala, V.: Lattice-ordered abelian groups finitely generated as semirings, to appear in the J. Commut. Algebra. arXiv:1502.01651

  24. Kroupa, T.: Core of coalition games on MV-algebras. J. Logic Comput. 21, 479–492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kroupa, T.: A generalized Möbius transform of games on MV-algebras and its application to a Cimmino-type algorithm for the core, optimization theory and related topics. Contemp. Math. 568, 139–158 (2012)

    Article  MathSciNet  Google Scholar 

  26. Kroupa, T.: States in Łukasiewicz logic correspond to probabilities of rational polyhedra. Int. J. Approx. Reason. 53, 435–446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kroupa, T., Majer, O.: Optimal strategic reasoning with McNaughton functions. Int. J. Approx. Reason. 55, 1458–1468 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kroupa, T., Teheux, B.: Modal extension of Łukasiewicz logic for reasoning about coalitional power. arXiv:1411.6452v1, 24 Nov 2014

  29. Lawson, M.V., Scott, P.: AF inverse monoids and the structure of countable MV-algebras. arXiv:1408.1231v2, 13 Oct 2014

  30. Marchioni, E., Woolridge, M.: Łukasiewicz games, In: Huhns (eds.) Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), Paris, France, pp. 837–844 (2014)

    Google Scholar 

  31. Marra, V., Spada, L.: The dual adjunction between MV-algebras and Tychonoff spaces. Studia Logica, special issue in memoriam Leo Esakia 100, 253–278 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Mundici, D.: The differential semantics of Łukasiewicz syntactic consequence, Chapter 7. In: Montagna, F. (ed.) Petr Hájek on Mathematical Fuzzy Logic, Outstanding Contributions, vol. 6, pp. 143–157. Springer International Publishing Switzerland (2015). doi:10.1007/978-3-319-06233-4

    Google Scholar 

  33. Mundici, D., Pedrini, A.: The Euler characteristic and valuations on MV-algebras. Math. Slovaca 64, 563–570 (2014). doi:10.2478/s12175-014-0226-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Mundici, D., Picardi, C.: Faulty sets of Boolean formulas and Łukasiewicz logic.J. Logic Comput., Adv. Access published Dec 8 (2014). doi:10.1093/logcom/exu073

  35. Nganou, J.B.: Profinite MV-algebras and multisets. Order, doi:10.1007/s11083-014-9345-5

    Google Scholar 

  36. Pedrini, A.: The Euler characteristic of a polyhedron as a valuation on its coordinate vector lattice. arXiv:1209.3248v1, 14 Sep 2012

  37. Pulmannová, S.: Representations of MV-algebras by Hilbert-space effects. Int. J. Theoret. Phys. 52, 2163–2170 (2013)

    Article  MATH  Google Scholar 

  38. Pulmannová, S., Vinceková, E.: MV-pairs and state operators. Fuzzy Sets Syst. 260, 62–76 (2015)

    Article  Google Scholar 

  39. Riečan, B.: Variation on a Poincaré theorem. Fuzzy Sets Syst. 232, 39–45 (2013)

    Article  Google Scholar 

  40. Xie, Y., Li, Y., Yang, A.: The pasting construction for effect algebras. Math. Slovaca 64, 1051–1074 (2014). doi:10.2478/s12175-014-0258-y

    Article  MathSciNet  MATH  Google Scholar 

  41. Shang, Y., Lu, X., Lu, R.: Computing power of turing machines in the framework of unsharp quantum logic. Theoret. Comput. Sci. 598, 2–14 (2015). doi:10.1016/j.tcs.2014.12.015

    Article  MathSciNet  Google Scholar 

  42. Weber, H.: On topological MV-algebras and topological \(\ell \)-groups. Topology Appl. 159, 3392–3395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I am grateful to my friend Peter Klement, whose many papers and books [20, and references therein] taught me the importance of t-norms, and whose kind hospitality at Magdalena Bildungshaus allowed me to get in contact with a community of mathematicians—of which he has been for decades one of the focal points—involved in all aspects of fuzzy logic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Mundici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mundici, D. (2016). A Geometric Approach to MV-Algebras. In: Saminger-Platz, S., Mesiar, R. (eds) On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory. Studies in Fuzziness and Soft Computing, vol 336. Springer, Cham. https://doi.org/10.1007/978-3-319-28808-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28808-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28807-9

  • Online ISBN: 978-3-319-28808-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics