Abstract
Markov unrecognizability theorem puts an end to the classical program of equipping any combinatorial manifold M with a computable set \(\mathscr {I}_M\) of invariants such that a manifold N is homeomorphic to M iff \(\mathscr {I}_M=\mathscr {I}_N\). To make sense of the statement of the theorem manifolds are replaced by finite strings of symbols for triangulated rational polyhedra, and homeomorphisms are understood as rational PL-homeomorphisms. Thus, objects and arrows undergo a radical transformation—and yet with no essential loss of generality for the original recognition problem. A further restriction on the arrows arises if one views the recognizability problem from the viewpoint of algorithmic complexity theory: here one must take into account the amount of information needed to specify rational polyhedra. We are thus left with the category of rational polyhedra (objects) with integer PL-maps (arrows). A new geometry arises, where the affine group over the integers takes on the same role as the isometry group does in euclidean space. Differently from the category of rational polyhedra with rational PL-maps, a wealth of new geometric computable invariants emerges in this new category. We discuss in particular the rational measure of rational polyhedra. Its role and applicability is amplified by the duality between rational polyhedra and finitely presented MV-algebras.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baczyński, M.: Residual implications revisited. Notes Smets-Magrez Theorem, Fuzzy Sets Syst. 145, 267–277 (2004)
Baczyński, M., Jayaram, B.: (S, N)- and R-implications: a state-of-the-art survey. Fuzzy Sets Syst. 159, 1836–1859 (2008)
Baker, K.A.: Free vector lattices. Can. J. Math. 20, 58–66 (1968)
Beynon, W.M.: On rational subdivisions of polyhedra with rational vertices. Can. J. Math. 29, 238–242 (1977)
Beynon, W.M.: Applications of duality in the theory of finitely generated lattice-ordered abelian groups. Can. J. Math. 29, 243–254 (1977)
Cabrer, L.M.: Simplicial geometry of unital lattice-ordered abelian groups. Forum Math. 27, 1309–1344 (2015). doi:10.1515/forum-2011-0131
Cabrer, L.M.: Rational simplicial geometry and projective lattice-ordered abelian groups. arXiv:1405.7118v1 [math.RA] 28 May 2014
Cabrer, L.M., Mundici, D.: Rational polyhedra and projective lattice-ordered abelian groups with order unit. Commun. Contemp. Math. 14(3), 1250017 (20 pages) (2012). doi:10.1142/S0219199712500174
Cabrer, L.M., Mundici, D.: Classifying orbits of the affine group over the integers, to appear in Ergodic Theory Dyn. Syst. doi:10.1017/etds.2015.45
Caramello, O., Russo, A.C.: The Morita-equivalence between MV-algebras and lattice-ordered abelian groups with strong unit. J. Algebra 422, 752–787 (2015)
Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, vol. 7. Kluwer, Dordrecht (2000)
Engelking, R.: General Topology, Revised and completed edition, Sigma Series in Pure Mathematics, vol. 6. Heldermann Verlag, Berlin (1989)
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)
Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Springer, New York (1996)
Federer, H.: Geometric Measure Theory. Springer, New York (1969)
Fodor, J., Roubens, M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)
Glass, A.M.W., Madden, J.J.: The word problem versus the isomorphism problem. J. Lond. Math. Soc. (2), 30, 53–61 (1984)
Hatcher, A., Algebraic Topology. Cambridge University Press (2001)
Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, 23, pp. 30–50 (1930). English translation: Investigations into the Sentential Calculus, Chapter IV. In: A. Tarski, Logic, Semantics, Metamathematics. Clarendon Press, Oxford (1956). Reprinted: Hackett, Indianapolis (1983)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht (2000)
Marra, V., Spada, L.: Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras. Ann. Pure Appl. Logic 164, 192–210 (2013)
Marra, V., Spada, L.: Two isomorphism criteria for directed colimits. arXiv:1312.0432v1, 2 Dec 2013
Menu, J., Pavelka, J.: A note on tensor products on the unit interval. Comment. Math. Univ. Carol. 17, 71–83 (1976)
Morelli, R.: The birational geometry of toric varieties. J. Algebraic Geom. 5, 751–782 (1996)
Mundici, D.: Interpretation of AF \(C^{*}\)-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)
Mundici, D.: The Haar theorem for lattice-ordered abelian groups with order-unit. Discret. Contin. Dyn. Syst. 21, 537–549 (2008)
Mundici, D.: Advanced Łukasiewicz calculus and MV-algebras. Trends in Logic, vol. 35. Springer, Berlin (2011)
Mundici, D.: Invariant measure under the affine group over \(\mathbb{Z},\) combinatorics. Probab. Comput. 23, 248–268 (2014)
Oda, T.: Convex bodies and algebraic geometry. Convex Bodies and Algebraic Geometry. Springer, New York (1988)
Shtan’ko, M.A.: Markov’s theorem and algorithmically non-recognizable combinatorial manifolds, Izvestiya RAN. Ser. Math. 68, 207–224 (2004)
Smets, P., Magrez, P.: Implication in fuzzy logic. Int. J. Approx. Reason. 1, 327–347 (1987)
Stallings, J.R.: Lectures on Polyhedral Topology. Tata Institute of Fundamental Research, Mumbay (1967)
Trillas, E., Valverde, L.: On implication and indistinguishability in the setting of fuzzy logic. In: Kacprzyk, J., Yager, R.R. (eds.) Management Decision Support Systems using Fuzzy Sets and Possibility Theory, pp. 198–212. Technical University Rhineland, Cologne (1985)
Whitehead, J.H.C.: On subdivisions of complexes. Math. Proc. Camb. Philos. Soc. 31, 69–75 (1935)
Whitehead, J.H.C.: Simplicial spaces, nuclei and \(m\)-groups. Proc. Lond. Math. Soc. 45, 243–327 (1939)
Włodarczyk, J.: Decompositions of birational toric maps in blow-ups and blow-downs. Trans. Am. Math. Soc. 349, 373–411 (1997)
Additional Recent Literature Cited in Section 5
Belluce, L.P., Di Nola, A., Ferraioli, A.R.: MV-semirings and their sheaf representations. Order 30, 165–179 (2013). doi:10.1007/s11083-011-9234-0
Belluce, L.P., Di Nola, A., Ferraioli, A.R.: Ideals of MV-semirings and MV-algebras. In: Litvinov, G.L., Sergeev, S.N. (eds.) Tropical and Idempotent Mathematics and Applications. Contemporary Mathematics, vol. 616, pp. 59–76 (2014)
Belluce, L.P., Di Nola, A., Lenzi, G.: On generalizing the Nullstellensatz for MV-algebras. J. Logic Comput. 25, 701–707 (2015). doi:10.1093/logcom/exu042
Belluce, L.P., Di Nola, A., Lenzi, G.: Algebraic geometry for MV-algebras. J. Symb. Logic 79(4), 1061–1091 (2014)
Busaniche, M., Mundici, D.: Bouligand-Severi tangents in MV-algebras. Revista Matemática Iberoamericana 30(1), 191–201 (2014)
Cabrer, L.M.: Bouligand-Severi \(k\)-tangents and strongly semisimple MV-algebras. J. Algebra 404, 271–283 (2014)
Cabrer, L.M.: Exact Unification. arXiv:1410.5583v1 [math.LO] 21 Oct 2014
Cabrer, L.M., Mundici, D.: Interval MV-algebras and generalizations. Int. J. Approx. Reason. 55, 1623–1642 (2014)
Cabrer, L.M., Mundici, D.M.: Severi-Bouligand tangents, Frenet frames and Riesz spaces. Adv. Appl. Math. 64, 1–20 (2015)
Cignoli, R., Marra, V.: Stone duality for real-valued multisets. Forum Math. 24, 1317–1331 (2012)
Di Nola, A., Ferraioli, A.R., Lenzi, G.: Algebraically closed MV-algebras and their sheaf representation. Ann. Pure Appl. Logic 164, 349–355 (2013)
Di Nola, A., Leustean, I.: Łukasiewicz logic and Riesz spaces. Soft Comput. 18, 2349–2363 (2014). doi:10.1007/s00500-014-1348-z
Di Nola, A., Russo, C.: Semiring and semimodule issues in MV-algebras. Comm. Algebra 41, 1017–1048 (2013)
Di Nola, A., Russo, C.: MV-semirings as a new perspective on mathematical fuzzy set theory: a survey. arXiv:1102.1999v4, 14 Nov 2014
Dvurečenskij, A.: Quantum structures versus partially ordered groups. Int. J. Theor. Phys. doi:10.1007/s10773-014-2479-9
Fedel, M., Keimel, K., Montagna, F., Roth, W.: Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic. Forum Math. 25, 405–441 (2013). doi:10.1515/FORM.2011.123
Flaminio, T., Godo, L., Kroupa, T.: Belief functions on MV-algebras of fuzzy sets: an overview. In: Torra, V., Narukawa, Y., Sugeno, M. (eds.) Non-Additive Measures, Studies in Fuzziness and Soft Computing, vol. 310, pp. 173–200. Springer (2014)
Flaminio, T., Godo, L., Hosni, H.: Coherence in the aggregate: a betting method for belief functions on many-valued events. Int. J. Approx. Reason. 58, 71–86 (2015). doi:10.1016/j.ijar.2015.01.001
Gavalec, M., Nemcová, Z., Sergeev, S.: Tropical linear algebra with the Łukasiewicz T-norm. Fuzzy Sets Syst. 276, 131–148 (2015). doi:10.1016/j.fss.2014.11.008
Gehrke, M., van Gool, S.J., Marra, V.: Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality. J. Algebra 417, 290–332 (2014)
Hansoul, G., Teheux, B.: Extending Łukasiewicz logics with a modality: algebraic approach to relational semantics. Stud. Logica 101, 505–545 (2013)
Jeřábek, E.E.: The complexity of admissible rules of Łukasiewicz logic. J. Logic Comput. 23, 693–705 (2013)
Kala, V.: Lattice-ordered abelian groups finitely generated as semirings, to appear in the J. Commut. Algebra. arXiv:1502.01651
Kroupa, T.: Core of coalition games on MV-algebras. J. Logic Comput. 21, 479–492 (2011)
Kroupa, T.: A generalized Möbius transform of games on MV-algebras and its application to a Cimmino-type algorithm for the core, optimization theory and related topics. Contemp. Math. 568, 139–158 (2012)
Kroupa, T.: States in Łukasiewicz logic correspond to probabilities of rational polyhedra. Int. J. Approx. Reason. 53, 435–446 (2012)
Kroupa, T., Majer, O.: Optimal strategic reasoning with McNaughton functions. Int. J. Approx. Reason. 55, 1458–1468 (2014)
Kroupa, T., Teheux, B.: Modal extension of Łukasiewicz logic for reasoning about coalitional power. arXiv:1411.6452v1, 24 Nov 2014
Lawson, M.V., Scott, P.: AF inverse monoids and the structure of countable MV-algebras. arXiv:1408.1231v2, 13 Oct 2014
Marchioni, E., Woolridge, M.: Łukasiewicz games, In: Huhns (eds.) Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), Paris, France, pp. 837–844 (2014)
Marra, V., Spada, L.: The dual adjunction between MV-algebras and Tychonoff spaces. Studia Logica, special issue in memoriam Leo Esakia 100, 253–278 (2012)
Mundici, D.: The differential semantics of Łukasiewicz syntactic consequence, Chapter 7. In: Montagna, F. (ed.) Petr Hájek on Mathematical Fuzzy Logic, Outstanding Contributions, vol. 6, pp. 143–157. Springer International Publishing Switzerland (2015). doi:10.1007/978-3-319-06233-4
Mundici, D., Pedrini, A.: The Euler characteristic and valuations on MV-algebras. Math. Slovaca 64, 563–570 (2014). doi:10.2478/s12175-014-0226-6
Mundici, D., Picardi, C.: Faulty sets of Boolean formulas and Łukasiewicz logic.J. Logic Comput., Adv. Access published Dec 8 (2014). doi:10.1093/logcom/exu073
Nganou, J.B.: Profinite MV-algebras and multisets. Order, doi:10.1007/s11083-014-9345-5
Pedrini, A.: The Euler characteristic of a polyhedron as a valuation on its coordinate vector lattice. arXiv:1209.3248v1, 14 Sep 2012
Pulmannová, S.: Representations of MV-algebras by Hilbert-space effects. Int. J. Theoret. Phys. 52, 2163–2170 (2013)
Pulmannová, S., Vinceková, E.: MV-pairs and state operators. Fuzzy Sets Syst. 260, 62–76 (2015)
Riečan, B.: Variation on a Poincaré theorem. Fuzzy Sets Syst. 232, 39–45 (2013)
Xie, Y., Li, Y., Yang, A.: The pasting construction for effect algebras. Math. Slovaca 64, 1051–1074 (2014). doi:10.2478/s12175-014-0258-y
Shang, Y., Lu, X., Lu, R.: Computing power of turing machines in the framework of unsharp quantum logic. Theoret. Comput. Sci. 598, 2–14 (2015). doi:10.1016/j.tcs.2014.12.015
Weber, H.: On topological MV-algebras and topological \(\ell \)-groups. Topology Appl. 159, 3392–3395 (2012)
Acknowledgments
I am grateful to my friend Peter Klement, whose many papers and books [20, and references therein] taught me the importance of t-norms, and whose kind hospitality at Magdalena Bildungshaus allowed me to get in contact with a community of mathematicians—of which he has been for decades one of the focal points—involved in all aspects of fuzzy logic.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Mundici, D. (2016). A Geometric Approach to MV-Algebras. In: Saminger-Platz, S., Mesiar, R. (eds) On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory. Studies in Fuzziness and Soft Computing, vol 336. Springer, Cham. https://doi.org/10.1007/978-3-319-28808-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-28808-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28807-9
Online ISBN: 978-3-319-28808-6
eBook Packages: EngineeringEngineering (R0)