Abstract
Denoising plays key role in the field of medical images. Reliable estimation and noise removal is very important for accurate diagnosis of the disease. This should be done in such a way that original resolution is retained while maintaining the valuable features. Multi-coil Magnetic Resonance Image(MRI) trails nonstationary noise following Rician and Noncentral Chi(nc-\(\chi \)) distribution. On using the modern techniques which make use of multi-coil MRI like in GRAPPA would yield nc-\(\chi \) distributed data. There has been lots of research done on the Rician nature but only few for nc-\(\chi \) distribution. The proposed method uses Nonlocal Mean(NLM) on extended Linear Minimum Mean Square Error(ELMMSE) for denoising multi-coil MRI having nc-\(\chi \) distributed data. The performance of the nonlocal scheme on multi-coil MRI is evaluated based on PSNR, SSIM and MSE and the result indicates proposed scheme is better than the existing scheme including Non local Maximum Likelihood(NLML), adaptive NLML and ELMMSE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
McVeigh, E.R., Henkelman, R.M., Bronskill, M.J.: Noise and filtration in magneticresonance imaging. Med. Phys. 12, 586–591 (1985)
Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Processing 12, 1579–1590 (2003)
Assemlal, H., Tschumperl, D., Brun, L.: Estimation variationnelle robuste de modèles complexes de diffusion en IRM à haute résolution angulaire et tractographie. In: GRETSI, pp. 5–8 (2007)
Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on CVPR 2005, vol. 2, pp. 60–65 (2005)
Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27, 425–441 (2008)
Krissian, K., Aja-Fernández, S.: Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Processing 18, 2265–2274 (2009)
Zhang, F., Ma, L.: MRI denoising using the anisotropic coupled diffusion equations. In: 3rd International Conference on BMEI 2010, vol. 1, pp. 397–401. IEEE (2010)
Nowak, R.D.: Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans. Image Processing 8, 1408–1419 (1999)
Martín-Fernández, M., Muñoz-Moreno, E., Cammoun, L., Thiran, J.-P., Westin, C.-F., Alberola-López, C.: Sequential anisotropic multichannel Wiener filtering with Rician bias correction applied to 3D regularization of DWI data. Med. Image Analysis 13, 19–35 (2009)
Sijbers, J., den Dekker, A.J., Scheunders, P., Van Dyck, D.: Maximum-likelihood estimation of Rician distribution parameters. IEEE Trans. Med. Imaging 17, 357–361 (1998)
Clarke, R.A., Scifo, P., Rizzo, G., Dell’Acqua, F., Scotti, G., Fazio, F.: Noise correction on Rician distributed data for fibre orientation estimators. IEEE Trans. Med. Imaging 27, 1242–1251 (2008)
He, L., Greenshields, I.R.: A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images. IEEE Trans. Med. Imaging 28, 165–172 (2009)
Aja-Fernández, S., Alberola-López, C., Westin, C.-F.: Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Trans. Image Processing 17, 1383–1398 (2008)
Dietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. MRI 26, 754–762 (2008)
Aja-Fernández, S., Tristán-Vega, A., Alberola-López, C.: Noise estimation in single-and multiple-coil magnetic resonance data based on statistical models. MRI 27, 1397–1409 (2009)
Constantinides, C.D., Atalar, E., McVeigh, R.: Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn. Reson. Med. 38, 852–857 (1997)
Aja-Fernández, S., Vegas-Sánchez-Ferrero, G., Tristán-Vega, A.: About the background distribution in MR data: a local variance study. MRI 28, 739–752 (2010)
Koay, C.G., Basser, P.J.: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. J. Magn. Reson. 179, 317–322 (2006)
Aja-Fernández, S., Pie, T., Vegas-Sánchez-Ferrero, G., et al.: Spatially variant noise estimation in MRI: A homomorphic approach. Med. Image Analysis 20, 184–197 (2015)
Koay, C.G., Özarslan, E., Basser, P.J.: A signal transformational framework for breaking the noise floor and its applications in MRI. J. Magn. Reson. 197, 108–119 (2009)
Brion, V., Poupon, C., Riff, O., Aja-Fernández, S., Tristán-Vega, A., Mangin, J.-F., Le Bihan, D., Poupon, F.: Parallel MRI noise correction: an extension of the LMMSE to non central \(\chi \) distributions. In: MICCAI 2011, pp. 226–233. Springer (2011)
Rajan, J., Veraart, J., Van Audekerke, J., Verhoye, M., Sijbers, J.: Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. MRI 30, 1512–1518 (2012)
Soumya, V., Abraham V.: An adaptive maximum likelihood estimation method for denoising multi-coil magnetic resonance images. In: Recent Advances in Computing and Communication Systems, pp. 16–19. Tata McGraw Hill (2015)
Brion, V., Poupon, C., Riff, O., Aja-Fernández, S., Tristán-Vega, A., Mangin, J.-F., Le Bihan, D., Poupon, F.: Noise correction for HARDI and HYDI data obtained with multi-channel coils and Sum of Squares reconstruction: An anisotropic extension of the LMMSE. MRI 31, 1360–1371 (2013)
Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Med. Image Analysis 12, 514–523 (2008)
Aja-Fernández, S., Niethammer, M., Kubicki, M., Shenton, M.E., Westin, C.-F.: Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans. Med. Imaging 27, 1389–1403 (2008)
Rajan, J., Van Audekerke, J., Van der Linden, A., Verhoye, M., Sijbers, J.: An adaptive non local maximum likelihood estimation method for denoising magnetic resonance images. In: 9th IEEE International Symposium on ISBI (2012), pp. 1136–1139 (2012)
Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17, 463–468 (1998)
Aja-Fernández, S.: Parallel MRI noisy phantom simulator (2012). http://in.mathworks.com/matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Processing 13, 600–612 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Soumya, V., Varghese, A., Manesh, T., Neetha, K.N. (2016). Denoising Multi-coil Magnetic Resonance Imaging Using Nonlocal Means on Extended LMMSE. In: Thampi, S., Bandyopadhyay, S., Krishnan, S., Li, KC., Mosin, S., Ma, M. (eds) Advances in Signal Processing and Intelligent Recognition Systems. Advances in Intelligent Systems and Computing, vol 425. Springer, Cham. https://doi.org/10.1007/978-3-319-28658-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-28658-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28656-3
Online ISBN: 978-3-319-28658-7
eBook Packages: EngineeringEngineering (R0)