Nothing Special   »   [go: up one dir, main page]

Skip to main content

Denoising Multi-coil Magnetic Resonance Imaging Using Nonlocal Means on Extended LMMSE

  • Conference paper
  • First Online:
Advances in Signal Processing and Intelligent Recognition Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 425))

Abstract

Denoising plays key role in the field of medical images. Reliable estimation and noise removal is very important for accurate diagnosis of the disease. This should be done in such a way that original resolution is retained while maintaining the valuable features. Multi-coil Magnetic Resonance Image(MRI) trails nonstationary noise following Rician and Noncentral Chi(nc-\(\chi \)) distribution. On using the modern techniques which make use of multi-coil MRI like in GRAPPA would yield nc-\(\chi \) distributed data. There has been lots of research done on the Rician nature but only few for nc-\(\chi \) distribution. The proposed method uses Nonlocal Mean(NLM) on extended Linear Minimum Mean Square Error(ELMMSE) for denoising multi-coil MRI having nc-\(\chi \) distributed data. The performance of the nonlocal scheme on multi-coil MRI is evaluated based on PSNR, SSIM and MSE and the result indicates proposed scheme is better than the existing scheme including Non local Maximum Likelihood(NLML), adaptive NLML and ELMMSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McVeigh, E.R., Henkelman, R.M., Bronskill, M.J.: Noise and filtration in magneticresonance imaging. Med. Phys. 12, 586–591 (1985)

    Article  Google Scholar 

  2. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Processing 12, 1579–1590 (2003)

    Article  MATH  Google Scholar 

  3. Assemlal, H., Tschumperl, D., Brun, L.: Estimation variationnelle robuste de modèles complexes de diffusion en IRM à haute résolution angulaire et tractographie. In: GRETSI, pp. 5–8 (2007)

    Google Scholar 

  4. Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on CVPR 2005, vol. 2, pp. 60–65 (2005)

    Google Scholar 

  5. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27, 425–441 (2008)

    Article  Google Scholar 

  6. Krissian, K., Aja-Fernández, S.: Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Processing 18, 2265–2274 (2009)

    Article  Google Scholar 

  7. Zhang, F., Ma, L.: MRI denoising using the anisotropic coupled diffusion equations. In: 3rd International Conference on BMEI 2010, vol. 1, pp. 397–401. IEEE (2010)

    Google Scholar 

  8. Nowak, R.D.: Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans. Image Processing 8, 1408–1419 (1999)

    Article  Google Scholar 

  9. Martín-Fernández, M., Muñoz-Moreno, E., Cammoun, L., Thiran, J.-P., Westin, C.-F., Alberola-López, C.: Sequential anisotropic multichannel Wiener filtering with Rician bias correction applied to 3D regularization of DWI data. Med. Image Analysis 13, 19–35 (2009)

    Article  Google Scholar 

  10. Sijbers, J., den Dekker, A.J., Scheunders, P., Van Dyck, D.: Maximum-likelihood estimation of Rician distribution parameters. IEEE Trans. Med. Imaging 17, 357–361 (1998)

    Article  Google Scholar 

  11. Clarke, R.A., Scifo, P., Rizzo, G., Dell’Acqua, F., Scotti, G., Fazio, F.: Noise correction on Rician distributed data for fibre orientation estimators. IEEE Trans. Med. Imaging 27, 1242–1251 (2008)

    Article  Google Scholar 

  12. He, L., Greenshields, I.R.: A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images. IEEE Trans. Med. Imaging 28, 165–172 (2009)

    Article  Google Scholar 

  13. Aja-Fernández, S., Alberola-López, C., Westin, C.-F.: Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Trans. Image Processing 17, 1383–1398 (2008)

    Article  Google Scholar 

  14. Dietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. MRI 26, 754–762 (2008)

    Article  Google Scholar 

  15. Aja-Fernández, S., Tristán-Vega, A., Alberola-López, C.: Noise estimation in single-and multiple-coil magnetic resonance data based on statistical models. MRI 27, 1397–1409 (2009)

    Article  Google Scholar 

  16. Constantinides, C.D., Atalar, E., McVeigh, R.: Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn. Reson. Med. 38, 852–857 (1997)

    Article  Google Scholar 

  17. Aja-Fernández, S., Vegas-Sánchez-Ferrero, G., Tristán-Vega, A.: About the background distribution in MR data: a local variance study. MRI 28, 739–752 (2010)

    Article  Google Scholar 

  18. Koay, C.G., Basser, P.J.: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. J. Magn. Reson. 179, 317–322 (2006)

    Article  Google Scholar 

  19. Aja-Fernández, S., Pie, T., Vegas-Sánchez-Ferrero, G., et al.: Spatially variant noise estimation in MRI: A homomorphic approach. Med. Image Analysis 20, 184–197 (2015)

    Article  Google Scholar 

  20. Koay, C.G., Özarslan, E., Basser, P.J.: A signal transformational framework for breaking the noise floor and its applications in MRI. J. Magn. Reson. 197, 108–119 (2009)

    Article  Google Scholar 

  21. Brion, V., Poupon, C., Riff, O., Aja-Fernández, S., Tristán-Vega, A., Mangin, J.-F., Le Bihan, D., Poupon, F.: Parallel MRI noise correction: an extension of the LMMSE to non central \(\chi \) distributions. In: MICCAI 2011, pp. 226–233. Springer (2011)

    Google Scholar 

  22. Rajan, J., Veraart, J., Van Audekerke, J., Verhoye, M., Sijbers, J.: Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. MRI 30, 1512–1518 (2012)

    Article  Google Scholar 

  23. Soumya, V., Abraham V.: An adaptive maximum likelihood estimation method for denoising multi-coil magnetic resonance images. In: Recent Advances in Computing and Communication Systems, pp. 16–19. Tata McGraw Hill (2015)

    Google Scholar 

  24. Brion, V., Poupon, C., Riff, O., Aja-Fernández, S., Tristán-Vega, A., Mangin, J.-F., Le Bihan, D., Poupon, F.: Noise correction for HARDI and HYDI data obtained with multi-channel coils and Sum of Squares reconstruction: An anisotropic extension of the LMMSE. MRI 31, 1360–1371 (2013)

    Article  Google Scholar 

  25. Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Med. Image Analysis 12, 514–523 (2008)

    Article  Google Scholar 

  26. Aja-Fernández, S., Niethammer, M., Kubicki, M., Shenton, M.E., Westin, C.-F.: Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans. Med. Imaging 27, 1389–1403 (2008)

    Article  Google Scholar 

  27. Rajan, J., Van Audekerke, J., Van der Linden, A., Verhoye, M., Sijbers, J.: An adaptive non local maximum likelihood estimation method for denoising magnetic resonance images. In: 9th IEEE International Symposium on ISBI (2012), pp. 1136–1139 (2012)

    Google Scholar 

  28. Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17, 463–468 (1998)

    Article  Google Scholar 

  29. Aja-Fernández, S.: Parallel MRI noisy phantom simulator (2012). http://in.mathworks.com/matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Processing 13, 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Soumya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Soumya, V., Varghese, A., Manesh, T., Neetha, K.N. (2016). Denoising Multi-coil Magnetic Resonance Imaging Using Nonlocal Means on Extended LMMSE. In: Thampi, S., Bandyopadhyay, S., Krishnan, S., Li, KC., Mosin, S., Ma, M. (eds) Advances in Signal Processing and Intelligent Recognition Systems. Advances in Intelligent Systems and Computing, vol 425. Springer, Cham. https://doi.org/10.1007/978-3-319-28658-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28658-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28656-3

  • Online ISBN: 978-3-319-28658-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics