Abstract
This paper presents a particle swarm optimisation (PSO) based multi-objective feature selection method for evolving a set of non-dominated feature subsets and achieving high classification performance. Firstly, a multi-objective PSO (named MOPSO-SRD) algorithm, is applied to solve feature selection problems. The results of this algorithm are then used to compare with the proposed multi-objective PSO algorithm, called MOPSO-SiD. MOPSO-SiD is specifically designed for feature selection problems, in which a subset similarity distance measure (distance in the solution space) is used to select a leader for each particle in the swarm. This distance measure is also used to update the archive set, which will be the final solutions returned by the MOPSO-SiD algorithm. The results show that both algorithms successfully evolve a set of non-dominated solutions, which include a small number of features while achieving similar or better performance than using all features. In addition, in most case MOPSO-SiD selects smaller feature subsets than MOPSO-SRD, and outperforms single objective PSO for feature selection and a traditional feature selection method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bache, K., Lichman, M.: Uci machine learning repository (2013). http://archive.ics.uci.edu/ml
Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)
Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(29), 29–38 (2008)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)
Kennedy, J., Eberhart, R., et al.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
Lane, M.C., Xue, B., Liu, I., Zhang, M.: Gaussian based particle swarm optimisation and statistical clustering for feature selection. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 133–144. Springer, Heidelberg (2014)
Leung, M.F., Ng, S.C., Cheung, C.C., Lui, A.: A new strategy for finding good local guides in mopso. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1990–1997, July 2014
Lin, F., Liang, D., Yeh, C.C., Huang, J.C.: Novel feature selection methods to financial distress prediction. Expert Syst. Appl. 41(5), 2472–2483 (2014)
Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: an ever evolving frontier in data mining. In: JMLR Proceedings on Feature Selection for Data Mining, vol. 10, pp. 4–13 (2010). JMLR.org
Liu, Y., Wang, G., Chen, H., Dong, H.: An improved particle swarm optimization for feature selection. J. Bionic Eng. 8(2), 191–200 (2011)
Marill, T., Green, D.M.: On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 9(1), 11–17 (1963)
Muni, D., Pal, N., Das, J.: Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(1), 106–117 (2006)
Purohit, A., Chaudhari, N., Tiwari, A.: Construction of classifier with feature selection based on genetic programming. In: IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–5 (2010)
Tran, B., Xue, B., Zhang, M.: Improved PSO for feature selection on high-dimensional datasets. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 503–515. Springer, Heidelberg (2014)
Van Den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. thesis, University of Pretoria (2006)
Whitney, A.W.: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 100(9), 1100–1103 (1971)
Xue, B., Zhang, M., Browne, W.N.: Single feature ranking and binary particle swarm optimisation based feature subset ranking for feature selection. In: Australasian Computer Science Conference (ACSC 2012), vol. 122, pp. 27–36 (2012)
Xue, B., Cervante, L., Shang, L., Browne, W.N., Zhang, M.: Binary PSO and rough set theory for feature selection: a multi-objective filter based approach. Int. J. Comput. Intell. Appl. 13(02), 1450009:1–1450009:34 (2014)
Xue, B., Cervante, L., Shang, L., Browne, W.N., Zhang, M.: A multi-objective particle swarm optimisation for filter-based feature selection in classification problems. Connect. Sci. 24(2–3), 91–116 (2012)
Xue, B., Zhang, M., Browne, W.N.: A comprehensive comparison on evolutionary feature selection approaches to classification. Int. J. Comput. Intell. Appl. 14(02), 1550008 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Nguyen, H.B., Xue, B., Zhang, M. (2016). A Subset Similarity Guided Method for Multi-objective Feature Selection. In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-28270-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28269-5
Online ISBN: 978-3-319-28270-1
eBook Packages: Computer ScienceComputer Science (R0)