Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Subset Similarity Guided Method for Multi-objective Feature Selection

  • Conference paper
  • First Online:
Artificial Life and Computational Intelligence (ACALCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9592))

  • 1299 Accesses

Abstract

This paper presents a particle swarm optimisation (PSO) based multi-objective feature selection method for evolving a set of non-dominated feature subsets and achieving high classification performance. Firstly, a multi-objective PSO (named MOPSO-SRD) algorithm, is applied to solve feature selection problems. The results of this algorithm are then used to compare with the proposed multi-objective PSO algorithm, called MOPSO-SiD. MOPSO-SiD is specifically designed for feature selection problems, in which a subset similarity distance measure (distance in the solution space) is used to select a leader for each particle in the swarm. This distance measure is also used to update the archive set, which will be the final solutions returned by the MOPSO-SiD algorithm. The results show that both algorithms successfully evolve a set of non-dominated solutions, which include a small number of features while achieving similar or better performance than using all features. In addition, in most case MOPSO-SiD selects smaller feature subsets than MOPSO-SRD, and outperforms single objective PSO for feature selection and a traditional feature selection method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bache, K., Lichman, M.: Uci machine learning repository (2013). http://archive.ics.uci.edu/ml

  2. Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)

    Article  MATH  Google Scholar 

  3. Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(29), 29–38 (2008)

    Article  MATH  Google Scholar 

  4. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  5. Kennedy, J., Eberhart, R., et al.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  6. Lane, M.C., Xue, B., Liu, I., Zhang, M.: Gaussian based particle swarm optimisation and statistical clustering for feature selection. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 133–144. Springer, Heidelberg (2014)

    Google Scholar 

  7. Leung, M.F., Ng, S.C., Cheung, C.C., Lui, A.: A new strategy for finding good local guides in mopso. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1990–1997, July 2014

    Google Scholar 

  8. Lin, F., Liang, D., Yeh, C.C., Huang, J.C.: Novel feature selection methods to financial distress prediction. Expert Syst. Appl. 41(5), 2472–2483 (2014)

    Article  Google Scholar 

  9. Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: an ever evolving frontier in data mining. In: JMLR Proceedings on Feature Selection for Data Mining, vol. 10, pp. 4–13 (2010). JMLR.org

  10. Liu, Y., Wang, G., Chen, H., Dong, H.: An improved particle swarm optimization for feature selection. J. Bionic Eng. 8(2), 191–200 (2011)

    Article  Google Scholar 

  11. Marill, T., Green, D.M.: On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 9(1), 11–17 (1963)

    Article  Google Scholar 

  12. Muni, D., Pal, N., Das, J.: Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(1), 106–117 (2006)

    Article  Google Scholar 

  13. Purohit, A., Chaudhari, N., Tiwari, A.: Construction of classifier with feature selection based on genetic programming. In: IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–5 (2010)

    Google Scholar 

  14. Tran, B., Xue, B., Zhang, M.: Improved PSO for feature selection on high-dimensional datasets. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 503–515. Springer, Heidelberg (2014)

    Google Scholar 

  15. Van Den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. thesis, University of Pretoria (2006)

    Google Scholar 

  16. Whitney, A.W.: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 100(9), 1100–1103 (1971)

    Article  MathSciNet  Google Scholar 

  17. Xue, B., Zhang, M., Browne, W.N.: Single feature ranking and binary particle swarm optimisation based feature subset ranking for feature selection. In: Australasian Computer Science Conference (ACSC 2012), vol. 122, pp. 27–36 (2012)

    Google Scholar 

  18. Xue, B., Cervante, L., Shang, L., Browne, W.N., Zhang, M.: Binary PSO and rough set theory for feature selection: a multi-objective filter based approach. Int. J. Comput. Intell. Appl. 13(02), 1450009:1–1450009:34 (2014)

    Article  Google Scholar 

  19. Xue, B., Cervante, L., Shang, L., Browne, W.N., Zhang, M.: A multi-objective particle swarm optimisation for filter-based feature selection in classification problems. Connect. Sci. 24(2–3), 91–116 (2012)

    Article  Google Scholar 

  20. Xue, B., Zhang, M., Browne, W.N.: A comprehensive comparison on evolutionary feature selection approaches to classification. Int. J. Comput. Intell. Appl. 14(02), 1550008 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, H.B., Xue, B., Zhang, M. (2016). A Subset Similarity Guided Method for Multi-objective Feature Selection. In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28270-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28269-5

  • Online ISBN: 978-3-319-28270-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics