Abstract
Neuronal connectivity matrices contain information vital to the understanding of brain structure and function. In this work we present graph-based visualization techniques for macroscale connectivity matrices that retain anatomical context while reducing the clutter and occlusion problems that plague 2D and 3D node-link diagrams. By partitioning the connectivity matrix into blocks corresponding to brain hemispheres and bundling graph edges we are able to generate intuitive visualizations that permit investigation at multiple scales (hemisphere, lobe, anatomical region). We demonstrate our approach on connectivity matrices computed using tractography of high angular resolution diffusion images acquired as part of a Parkinson’s disease study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005)
Behrens, T.E., Sporns, O.: Human connectomics. Curr. Opin. Neurobiol. 22, 144–153 (2012)
Micheva, K.D., Smith, S.J.: Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007)
Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259 (1994)
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)
Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J.P., Sporns, O., Do, K.Q., Maeder, P., Meuli, R., Hagmann, P.: Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203, 386–397 (2012)
Margulies, D.S., Böttger, J., Watanabe, A., Gorgolewski, K.J.: Visualizing the human connectome. NeuroImage 80, 445–461 (2013)
Pfister, H., Kaynig, V., Botha, C.P., Bruckner, S., Dercksen, V.J., Hege, H.C., Roerdink, J.B.: Visualization in connectomics. In: Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H. (eds.) Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization, pp. 221–245. Springer, London (2014)
McGraw, T., Nadar, M.: Stochastic DT-MRI connectivity mapping on the GPU. IEEE Trans. Visual. Comput. Graphics 13, 1504–1511 (2007)
McGraw, T., Herring, D.: High-order diffusion tensor connectivity mapping on the GPU. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., McMahan, R., Jerald, J., Zhang, H., Drucker, S.M., Kambhamettu, C., El Choubassi, M., Deng, Z., Carlson, M. (eds.) ISVC 2014, Part II. LNCS, vol. 8888, pp. 396–405. Springer, Heidelberg (2014)
Sporns, O.: The human connectome: a complex network. Ann. NY Acad. Sci. 1224, 109–125 (2011)
Dinkla, K., Westenberg, M.A., van Wijk, J.J.: Compressed adjacency matrices: untangling gene regulatory networks. IEEE Trans. Visual. Comput. Graphics 18, 2457–2466 (2012)
Sheny, Z., Maz, K.L.: Path visualization for adjacency matrices. In: Proceedings of the 9th Joint Eurographics/IEEE VGTC Conference on Visualization, Eurographics Association, pp. 83–90 (2007)
Henry, N., Fekete, J.D., McGuffin, M.J.: Nodetrix: a hybrid visualization of social networks. IEEE Trans. Visual. Comput. Graphics 13, 1302–1309 (2007)
Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graphics Forum 28, 983–990 (2009)
Bottger, J., Schafer, A., Lohmann, G., Villringer, A., Margulies, D.S.: Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE Trans. Visual. Comput. Graphics 20, 471–480 (2014)
Li, K., Guo, L., Faraco, C., Zhu, D., Chen, H., Yuan, Y., Lv, J., Deng, F., Jiang, X., Zhang, T., et al.: Visual analytics of brain networks. NeuroImage 61, 82–97 (2012)
Al-Awami, A., Beyer, J., Strobelt, H., Kasthuri, N., Lichtman, J., Pfister, H., Hadwiger, M.: Neurolines: a subway map metaphor for visualizing nanoscale neuronal connectivity. IEEE Trans. Visual. Comput. Graphics (Proceedings IEEE InfoVis) 2014(20), 2369–2378 (2014)
Irimia, A., Chambers, M.C., Torgerson, C.M., Van Horn, J.D.: Circular representation of human cortical networks for subject and population-level connectomic visualization. NeuroImage 60, 1340–1351 (2012)
Rosenholtz, R., Li, Y., Nakano, L.: Measuring visual clutter. J. Vis. 7, 1–22 (2007)
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002)
Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6, 183–210 (1995)
Weldeselassie, Y.T., Barmpoutis, A., Atkins, M.S.: Symmetric positive semi-definite Cartesian tensor fiber orientation distributions (CT-FOD). Med. Image Anal. 16, 1121–1129 (2012)
Baggio, H.C., Sala-Llonch, R., Segura, B., Marti, M.J., Valldeoriola, F., Compta, Y., Tolosa, E., Junqué, C.: Functional brain networks and cognitive deficits in Parkinson’s disease. Hum. Brain Mapp. 35, 4620–4634 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
McGraw, T. (2015). Graph-Based Visualization of Neuronal Connectivity Using Matrix Block Partitioning and Edge Bundling. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)