Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Complexity of Disjunction in Intuitionistic Logic

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9537))

Included in the following conference series:

  • 593 Accesses

Abstract

In the formal study of security protocols and access control systems, fragments of intuitionistic logic play a vital role. These are required to be efficient, and are typically disjunction-free. In this paper, we study the complexity of adding disjunction to these subsystems. Our lower bound results show that very little needs to be added to disjunction to get co-NP-hardness, while our upper bound results show that even a system with conjunction, disjunction, and restricted forms of negation and implication is in co-NP. Our upper bound proofs also suggest parameters which we can bound to obtain PTIME algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    From now on, whenever we refer to the complexity of a logic, we implicitly mean the complexity of the derivability problem for it.

  2. 2.

    It is important to note that we consider only the negation elimination rule. The algorithms in this section do not work in the presence of the \(\lnot {i}\) rule. Nor do we know of a straightforward modification to handle the \(\lnot {i}\) rule. It is not easy to say without further study whether the complexity stays the same or increases, either.

References

  1. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in distributed systems. ACM TOPLAS 15(4), 706–734 (1993)

    Article  Google Scholar 

  2. Baskar, A., Naldurg, P., Raghavendra, K.R., Suresh, S.P.: Primal infon logic: derivability in polynomial time. In: FSTTCS 2013, LIPIcs, vol. 24, pp. 163–174 (2013)

    Google Scholar 

  3. Baskar, A., Ramanujam, R., Suresh, S.P.: A DEXPTIME-complete Dolev-Yao theory with distributive encryption. In: Hlinený, P., Kucera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 102–113. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Beklemishev, L.D., Gurevich, Y.: Propositional primal logic with disjunction. J. Log. Comp. 24(1), 257–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  6. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity decisions in presence of exclusive or. In: LICS 2003, pp. 271–280 (2003)

    Google Scholar 

  7. Comon-Lundh, H., Treinen, R.: Easy intruder deductions. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 225–242. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Trans. Inf. Theory 29, 198–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabbay, D.M., de Jongh, D.H.J.: A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property. J. Sym. Log. 39(1), 67–78 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gurevich, Y., Neeman, I.: DKAL: Distributed-knowledge authorization language. In: 21st IEEE CSF Symposium, pp. 149–162. IEEE Press, New York (2008)

    Google Scholar 

  11. Gurevich, Y., Neeman, I.: Logic of infons: the propositional case. ACM Trans. Comp. Log. 12(2), 9:1–9:28 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Kurokawa, H.: Hypersequent calculi for intuitionistic logic with classical atoms. APAL 161(3), 427–446 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Magirius, M., Mundhenk, M., Palenta, R.: The complexity of primal logic with disjunction. IPL 115(5), 536–542 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. McAllester, D.A.: Automatic Recognition of Tractability in Inference Relations. JACM 40(2), 284–303 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ramanujam, R., Sundararajan, V., Suresh, S.P.: Extending Dolev-Yao with assertions. In: Prakash, A., Shyamasundar, R. (eds.) ICISS 2014. LNCS, vol. 8880, pp. 50–68. Springer, Heidelberg (2014)

    Google Scholar 

  16. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions and composed keys is NP-complete. TCS 299, 451–475 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sakharov, A.: Median logic. Technical report, St. Petersberg Mathematical Society (2004). http://www.mathsoc.spb.ru/preprint/2004/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Suresh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ramanujam, R., Sundararajan, V., Suresh, S.P. (2016). The Complexity of Disjunction in Intuitionistic Logic. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2016. Lecture Notes in Computer Science(), vol 9537. Springer, Cham. https://doi.org/10.1007/978-3-319-27683-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27683-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27682-3

  • Online ISBN: 978-3-319-27683-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics