Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Privacy-Preserving Compressive Data Gathering Scheme in WSNs

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9528))

  • 1895 Accesses

Abstract

Due to the strict energy limitation and the common vulnerability of WSNs, providing efficient and security data gathering in WSNs becomes an essential problem. Compressive data gathering, which is based on the recent breakthroughs in compressive sensing theory, has been proposed as a viable approach for data gathering in WSNs at low communication overhead. Nevertheless, compressive data gathering is susceptible to various attacks due to the open wireless medium. To thwart traffic analysis/flow tracing and realize privacy preservation, this paper proposes a novel Efficient Privacy-Preserving Compressive Data Gathering Scheme which exploits homomorphic encryption functions in compressive data gathering. With homomorphic encryption on the compressive sensing encoded sensory reading messages, the proposed scheme offers two significant privacy-preserving features, message flow untraceability and message content confidentiality, for efficiently thwarting the traffic analysis attacks. Extensive performance evaluations and security analysis demonstrate the validity and efficiency of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xing, K., Cheng, X., Liu, F.: Location-centric storage for safety warning based on roadway sensor networks. J. Parallel Distrib. Comput. 67(3), 336–345 (2007)

    Article  MATH  Google Scholar 

  2. Xie, K., Wang, L., Wang, X.: Learning from the past: intelligent on-line weather monitoring based on matrix completion. In: ICDCS, pp. 176–185. IEEE (2014)

    Google Scholar 

  3. Liu, F., Cheng, X., Chen, D.: Insider attacker detection inwireless sensor networks. In: Infocom, pp. 1937–1945 (2007)

    Google Scholar 

  4. Wu, W., Cheng, X., Ding, M.: Localized outlying and boundary data detection in sensor networks. Knowl. Data Eng. 19(8), 1145–1157 (2006)

    Article  Google Scholar 

  5. Ding, M., Cheng, X.: Robust event boundary detection in sensor networks - a mixture model based approach. In: INFOCOM 2009, pp. 2991–2995. IEEE (2009)

    Google Scholar 

  6. Zhang, B., Cheng, X., Zhang, N.: Sparse target counting and localization in sensor networks based on compressive sensing. In: INFOCOM, pp. 2255–2263 (2011)

    Google Scholar 

  7. Wu, D., Chen, D., Xing, K.: A statistical approach for target counting in sensor-based surveillance systems. INFOCOM 131(5), 226–234 (2012)

    Google Scholar 

  8. Cheng, X., Chen, D., Cheng, W.: A monte carlo method for mobile target counting. In: ICDCS, pp. 750–759 (2011)

    Google Scholar 

  9. Tian, X., Zhu, Y.H., Zhang, D.: Reliable and energy-efficient data forwarding in industrial wireless sensor networks. IEEE Syst,J. PP(99), 1–11 (2015)

    Article  Google Scholar 

  10. Xie, K., Luo, W., Wang, X.: Road condition gathering with vehicular dtn. In: INFOCOM WKSHPS, pp. 576–581. IEEE (2015)

    Google Scholar 

  11. Tang, Y., Zhang, B., Jing, T.: Robust compressive data gathering in wireless sensor networks. Wireless Commun. 12(6), 2754–2761 (2013)

    Google Scholar 

  12. Li, Y., Xie, K., Wang, X.: Pushing towards the limit of sampling rate: adaptive chasing sampling. In: MASS (2015)

    Google Scholar 

  13. Dl, D.: Compressed sensing. IEEE Trans. Inform. Theor. 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, C., Wu, F., Sun, J.: Compressive data gathering for large-scale wireless sensor networks. In: Mobile computing and networking, pp. 145–156. ACM (2009)

    Google Scholar 

  15. Xiang, L., Luo, J., Vasilakos, A.: Compressed data aggregation for energy efficient wireless sensor networks. In: SECON, pp. 46–54 (2011)

    Google Scholar 

  16. Xiang, L., Luo, J., Rosenberg, C.: Compressed data aggregation: energy-efficient and high-fidelity data collection. Networking 21(6), 1722–1735 (2013)

    Article  Google Scholar 

  17. Zhao, C., Zhang, W., Yang, X.: A novel compressive sensing based data aggregation scheme for wireless sensor networks. In: ICC, pp. 18–23 (2014)

    Google Scholar 

  18. Kaneko, M., Agha, A.K.: Compressed sensing based protocol for interfering data recovery in multi-hop sensor networks. Commun. Lett. 18(1), 42–45 (2014)

    Article  Google Scholar 

  19. Hu, P., Xing, K., Cheng, X.: Information leaks out: attacks and countermeasures on compressive data gathering in wireless sensor networks. In: 2014 Proceedings IEEE INFOCOM, pp. 1258–1266 (2014)

    Google Scholar 

  20. Benaloh, J.: Dense probabilistic encryption. In: Proceedings of the Workshop on Selected Areas of Cryptography (1994)

    Google Scholar 

  21. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Chen, S.S., Donoho, D.L.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 33–61 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Iwen, M.A.: Simple deterministically constructible rip matrices with sublinear fourier sampling requirements. In: CISS, pp. 870–875 (2009)

    Google Scholar 

  25. Emmanuel, J., Cands, T.T.: Decoding by linear programming. IEEE Trans. Inf. Theory 34(4), 435–443 (2004)

    Google Scholar 

  26. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Candes, E.J., Tao, T.: Decoding by linear programming. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bajwa, W., Haupt, J., Sayeed, A.: Compressive wireless sensing. In: IPSN, pp. 134–142 (2006)

    Google Scholar 

  29. Charbiwala, Z., Chakraborty, S., Zahedi, S.: Compressive oversampling for robust data transmission in sensor networks. In: INFOCOM, pp. 1–9 (2010)

    Google Scholar 

  30. Wang, J., Tang, S., Yin, B.: Data gathering in wireless sensor networks through intelligent compressive sensing. In: INFOCOM, pp. 603–611 (2012)

    Google Scholar 

  31. Challal, Y., Seba, H.: Group key management protocols: a novel taxonomy. Int. J. Inf. Technol. 2(1), 105–118 (2005)

    Google Scholar 

  32. Lin, X., Lu, R., Zhu, H.: Asrpake: an anonymous secure routing protocol with authenticated key exchange for wireless ad hoc networks. In: Communications, pp. 1247–1253 (2007)

    Google Scholar 

  33. Joel, A., Tropp, A.C.G.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Raymond, J.-F.: Traffic analysis: protocols, attacks, design issues, and open problems. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 10–29. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Acknowledgments

The work is supported by the open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) under Grant No. SKLNST-2013-1-04, the Prospective Research Project on Future Networks (Jiangsu Future Networks Innovation Institute) under Grant No. BY2013095-4-06, the National Natural Science Foundation of China under Grant Nos. 61572184, 61472283, 61271185, 61173167, and 61472131, U.S. National Science Foundation under Grant Nos. ECCS-1231800 and CNS 1247924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueping Ning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xie, K. et al. (2015). An Efficient Privacy-Preserving Compressive Data Gathering Scheme in WSNs. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9528. Springer, Cham. https://doi.org/10.1007/978-3-319-27119-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27119-4_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27118-7

  • Online ISBN: 978-3-319-27119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics