Nothing Special   »   [go: up one dir, main page]

Skip to main content

Left-Right Relations for Qualitative Representation and Alignment of Planar Spatial Networks

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Its Applications (MICAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9414))

Included in the following conference series:

Abstract

The spatial relations “left-of” and “right-of” are important for distinguishing relative positions of objects within and with respect to elements of plane embedded networks such as networks of streets. We present a representation of the “left/right” relations that is suitable for use in sketch-to-metric map alignment. The new representation is based on a new family of qualitative spatial calculi called \(\mathcal {ULSTRA}\). Although left/right relations have already been formalized for line segments in the Dipole Relation Algebra (\(\mathcal {DRA}\)) family of qualitative spatial calculi, the distinctions made by those calculi are too strong for applications such as sketch-to-metric map alignment. We show in an empirical evaluation that performing sketch-to-metric map alignment with the new representation is more effective than using the original \(\mathcal {DRA}\) calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.sketchmapia.de.

  2. 2.

    http://www.uni-muenster.de/Geoinformatics/en/sketchmapia/sketch-map-database.php.

References

  1. Bhatt, M., Lee, J.H., Schultz, C.: CLP(QS): a declarative spatial reasoning framework. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 210–230. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Chipofya, M.: Combining DRA and CYC into a network friendly calculus. In: Raedt, L.D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI, vol. 242 of Frontiers in Artificial Intelligence and Applications, pp. 234–239. IOS Press (2012)

    Google Scholar 

  3. Chipofya, M., Schultz, C., Schwering, A.: A metaheuristic approach for efficient and effective sketch-to-metric map alignment. Int. J. Geogr. Inf. Sci. 29 (2015)

    Google Scholar 

  4. Chipofya, M., Schwering, A., Binor, T.: Matching qualitative spatial scene descriptions á la tabu. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 388–402. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Chipofya, M., Wang, J., Schwering, A.: Towards cognitively plausible spatial representations for sketch map alignment. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 20–39. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Grimson, W.E.L.: Object Recognition by Computer - The Role of Geometric Constraints. MIT Press, Cambridge (1990)

    Google Scholar 

  7. Jan, S., Schwering, A., Chipofya, M., Wang, J.: Qualitative representations of schematized and distorted street segments in sketch maps. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds.) Spatial Cognition 2014. LNCS, vol. 8684, pp. 253–267. Springer, Heidelberg (2014)

    Google Scholar 

  8. Lee, J.H.: The complexity of reasoning with relative directions. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Frontiers in Artificial Intelligence and Applications, ECAI 2014, vol. 263, pp. 507–512 (2014)

    Google Scholar 

  9. T.O. line Encyclopedia of Integer Sequences. Number of graphs on n unlabeled nodes: Accessed 14 July 2015

    Google Scholar 

  10. Lücke, D.: Qualitative Spatial Reasoning about Relative Orientation: A Question of Consistency. Ph.D. thesis, University of Bremen (2012)

    Google Scholar 

  11. Moratz, R., Lücke, D., Mossakowski, T.: Oriented straight line segment algebra: Qualitative spatial reasoning about oriented objects. CoRR, abs/0912.5533 (2009)

    Google Scholar 

  12. Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments. In: ECAI, pp. 234–238. Citeseer (2000)

    Google Scholar 

  13. Nedas, K., Egenhofer, M.: Spatial-scene similarity queries. Trans. GIS 12(6), 661–681 (2008)

    Article  Google Scholar 

  14. Schultz, C., Bhatt, M.: Spatial symmetry driven pruning strategies for efficient declarative spatial reasoning. In: Proceedings of the 12th International Conference on Spatial Information Theory, COSIT 2015, Santa Fe, New Mexico, USA (2011)

    Google Scholar 

  15. Schultz, C., Bhatt, M.: Declarative spatial reasoning with boolean combinations of axis-aligned rectangular polytopes. In 21st European Conference on Artificial Intelligence (ECAI 2014), Prague, Czech Republic (2014)

    Google Scholar 

  16. Schultz, C., Bhatt, M.: Encoding relative orientation and mereotopology relations with geometric constraints in clp(qs). In: 1st Workshop on Logics for Qualitative Modelling and Reasoning (LQMR 2015), Lodz, Poland, September 2015

    Google Scholar 

  17. Schwering, A., Wang, J., Chipofya, M., Jan, S., Li, R., Broelemann, K.: Sketchmapia: qualitative representations for the alignment of sketch and metric maps. Spati. Cognit. Comput. 14(3), 220–254 (2014)

    Google Scholar 

  18. Sciascio, E.D., Donini, F., Mongiello, M.: Spatial layout representation for query-by-sketch content-based image retrieval. Pattern Recogn. Lett. 23(13), 1599–1612 (2002)

    Article  MATH  Google Scholar 

  19. Wallgrün, J.O., Wolter, D., Richter, K.-F.: Qualitative matching of spatial information. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2010, pp. 300–309, New York, USA. ACM (2010)

    Google Scholar 

  20. Wang, J., Mülligann, C., Schwering, A.: An empirical study on relevant aspects for sketch map alignment. In: Geertman, S., Reinhardt, W., Toppen, F. (eds.) Advancing Geoinformation Science for a Changing World. Lecture Notes in Geoinformation and Cartography, vol. 1, pp. 497–518. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially funded by Universität Münster and the German Research Foundation (DFG) under grant Grant SCHW 1372/7-1:SketchMapia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malumbo Chipofya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chipofya, M., Schwering, A., Schultz, C., Harason, E., Jan, S. (2015). Left-Right Relations for Qualitative Representation and Alignment of Planar Spatial Networks. In: Pichardo Lagunas, O., Herrera Alcántara, O., Arroyo Figueroa, G. (eds) Advances in Artificial Intelligence and Its Applications. MICAI 2015. Lecture Notes in Computer Science(), vol 9414. Springer, Cham. https://doi.org/10.1007/978-3-319-27101-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27101-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27100-2

  • Online ISBN: 978-3-319-27101-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics