Abstract
The spatial relations “left-of” and “right-of” are important for distinguishing relative positions of objects within and with respect to elements of plane embedded networks such as networks of streets. We present a representation of the “left/right” relations that is suitable for use in sketch-to-metric map alignment. The new representation is based on a new family of qualitative spatial calculi called \(\mathcal {ULSTRA}\). Although left/right relations have already been formalized for line segments in the Dipole Relation Algebra (\(\mathcal {DRA}\)) family of qualitative spatial calculi, the distinctions made by those calculi are too strong for applications such as sketch-to-metric map alignment. We show in an empirical evaluation that performing sketch-to-metric map alignment with the new representation is more effective than using the original \(\mathcal {DRA}\) calculi.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhatt, M., Lee, J.H., Schultz, C.: CLP(QS): a declarative spatial reasoning framework. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 210–230. Springer, Heidelberg (2011)
Chipofya, M.: Combining DRA and CYC into a network friendly calculus. In: Raedt, L.D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI, vol. 242 of Frontiers in Artificial Intelligence and Applications, pp. 234–239. IOS Press (2012)
Chipofya, M., Schultz, C., Schwering, A.: A metaheuristic approach for efficient and effective sketch-to-metric map alignment. Int. J. Geogr. Inf. Sci. 29 (2015)
Chipofya, M., Schwering, A., Binor, T.: Matching qualitative spatial scene descriptions á la tabu. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 388–402. Springer, Heidelberg (2013)
Chipofya, M., Wang, J., Schwering, A.: Towards cognitively plausible spatial representations for sketch map alignment. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 20–39. Springer, Heidelberg (2011)
Grimson, W.E.L.: Object Recognition by Computer - The Role of Geometric Constraints. MIT Press, Cambridge (1990)
Jan, S., Schwering, A., Chipofya, M., Wang, J.: Qualitative representations of schematized and distorted street segments in sketch maps. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds.) Spatial Cognition 2014. LNCS, vol. 8684, pp. 253–267. Springer, Heidelberg (2014)
Lee, J.H.: The complexity of reasoning with relative directions. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Frontiers in Artificial Intelligence and Applications, ECAI 2014, vol. 263, pp. 507–512 (2014)
T.O. line Encyclopedia of Integer Sequences. Number of graphs on n unlabeled nodes: Accessed 14 July 2015
Lücke, D.: Qualitative Spatial Reasoning about Relative Orientation: A Question of Consistency. Ph.D. thesis, University of Bremen (2012)
Moratz, R., Lücke, D., Mossakowski, T.: Oriented straight line segment algebra: Qualitative spatial reasoning about oriented objects. CoRR, abs/0912.5533 (2009)
Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments. In: ECAI, pp. 234–238. Citeseer (2000)
Nedas, K., Egenhofer, M.: Spatial-scene similarity queries. Trans. GIS 12(6), 661–681 (2008)
Schultz, C., Bhatt, M.: Spatial symmetry driven pruning strategies for efficient declarative spatial reasoning. In: Proceedings of the 12th International Conference on Spatial Information Theory, COSIT 2015, Santa Fe, New Mexico, USA (2011)
Schultz, C., Bhatt, M.: Declarative spatial reasoning with boolean combinations of axis-aligned rectangular polytopes. In 21st European Conference on Artificial Intelligence (ECAI 2014), Prague, Czech Republic (2014)
Schultz, C., Bhatt, M.: Encoding relative orientation and mereotopology relations with geometric constraints in clp(qs). In: 1st Workshop on Logics for Qualitative Modelling and Reasoning (LQMR 2015), Lodz, Poland, September 2015
Schwering, A., Wang, J., Chipofya, M., Jan, S., Li, R., Broelemann, K.: Sketchmapia: qualitative representations for the alignment of sketch and metric maps. Spati. Cognit. Comput. 14(3), 220–254 (2014)
Sciascio, E.D., Donini, F., Mongiello, M.: Spatial layout representation for query-by-sketch content-based image retrieval. Pattern Recogn. Lett. 23(13), 1599–1612 (2002)
Wallgrün, J.O., Wolter, D., Richter, K.-F.: Qualitative matching of spatial information. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2010, pp. 300–309, New York, USA. ACM (2010)
Wang, J., Mülligann, C., Schwering, A.: An empirical study on relevant aspects for sketch map alignment. In: Geertman, S., Reinhardt, W., Toppen, F. (eds.) Advancing Geoinformation Science for a Changing World. Lecture Notes in Geoinformation and Cartography, vol. 1, pp. 497–518. Springer, Heidelberg (2011)
Acknowledgements
This work was partially funded by Universität Münster and the German Research Foundation (DFG) under grant Grant SCHW 1372/7-1:SketchMapia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chipofya, M., Schwering, A., Schultz, C., Harason, E., Jan, S. (2015). Left-Right Relations for Qualitative Representation and Alignment of Planar Spatial Networks. In: Pichardo Lagunas, O., Herrera Alcántara, O., Arroyo Figueroa, G. (eds) Advances in Artificial Intelligence and Its Applications. MICAI 2015. Lecture Notes in Computer Science(), vol 9414. Springer, Cham. https://doi.org/10.1007/978-3-319-27101-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-27101-9_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27100-2
Online ISBN: 978-3-319-27101-9
eBook Packages: Computer ScienceComputer Science (R0)