Nothing Special   »   [go: up one dir, main page]

Skip to main content

EPiC: Efficient Privacy-Preserving Counting for MapReduce

  • Conference paper
  • First Online:
Networked Systems (NETYS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9466))

Included in the following conference series:

Abstract

In the face of an untrusted cloud infrastructure, outsourced data needs to be protected. We present EPiC, a practical protocol for the privacy-preserving evaluation of a fundamental operation on data sets: frequency counting. We show how a general pattern, defined by a Boolean formula, is arithmetized into a multivariate polynomial and used in EPiC. To increase the performance of the system, we introduce a new efficient privacy-preserving encoding with “somewhat homomorphic” properties based on previous work on the Hidden Modular Group assumption. Besides a formal analysis where we prove EPiC’s privacy, we also present implementation and evaluation results. We specifically target Google’s prominent MapReduce paradigm as offered by major cloud providers. Our evaluation performed both locally and in Amazon’s public cloud with up to 1 TB data sets shows only a modest overhead of \(20\,\%\) compared to non-private counting, attesting to EPiC’s efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Domain size \(|\mathcal {D}_k|\) indicates the number of different values a field can take.

  2. 2.

    \(\Vert X\Vert =\lceil \log _2|X|\rceil \) denotes size in bits of X.

References

  1. Amazon Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/

  2. Apache. Hadoop (2010). http://hadoop.apache.org/

  3. Babai, L., Fortnow, L.: Arithmetization: a new method in structural complexity theory. Comput. Complex. 1(1), 41–66 (1991). ISSN 1016-3328

    Article  MathSciNet  MATH  Google Scholar 

  4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of Symposium on Operating System Design and Implementation, San Francisco, USA, pp. 137–150 (2004)

    Google Scholar 

  7. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178 (2009)

    Google Scholar 

  9. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Kamara, S., Raykova, M.: Parallel homomorphic encryption. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 213–225. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Lauter, K., Naehrig, N., Vaikuntanathan, V.: Can homomorphic encryption be practical?. In: Proceedings of ACM Workshop on Cloud Computing Security, Chicago, USA (2011)

    Google Scholar 

  12. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992). ISSN 0004–5411

    Article  MathSciNet  MATH  Google Scholar 

  13. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceedings of Symposium on Security and Privacy, Berkeley, USA, pp. 44–55 (2000)

    Google Scholar 

  14. Trostle, J., Parrish, A.: Efficient computationally private information retrieval from anonymity or trapdoor groups. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 114–128. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Vaikuntanathan, V.: Computing blindfolded: new developments in fully homomorphic encryption. In: FOCS 2011, Washington, DC, USA, pp. 5–16 (2011). ISBN 978-0-7695-4571-4

    Google Scholar 

  16. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Vo-Huu, T.D., Blass, E.-O., Noubir, G.: EPiC Source Code. http://www.ccs.neu.edu/home/noubir/projects/epic

Download references

Acknowledgement

This work was partially supported by NSF grant 1218197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Triet D. Vo-Huu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vo-Huu, T.D., Blass, EO., Noubir, G. (2015). EPiC: Efficient Privacy-Preserving Counting for MapReduce. In: Bouajjani, A., Fauconnier, H. (eds) Networked Systems . NETYS 2015. Lecture Notes in Computer Science(), vol 9466. Springer, Cham. https://doi.org/10.1007/978-3-319-26850-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26850-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26849-1

  • Online ISBN: 978-3-319-26850-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics