Nothing Special   »   [go: up one dir, main page]

Skip to main content

Local Search Algorithms for k-Median and k-Facility Location Problems with Linear Penalties

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9486))

Abstract

We present two local search algorithms for the k-median and k-facility location problems with linear penalties (k-MLP and k-FLPLP), two extensions of the classical k-median and k-facility location problems respectively. We show that the approximation ratios of these two algorithms are \(3+2/p+\epsilon \) for the k-MLP, and \(2 + 1/p + \sqrt{3+ 2/p+ 1/p^2} + \epsilon \) for the k-FLPLP, respectively, where \(p \in {\mathbb {Z}}_+\) is a parameter of the algorithms and \(\epsilon >0\) is a positive number. In particular, the \((3+2/p+\epsilon )\)-approximation improves the best known 4-approximation for the k-MLP for any \(p>2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for prize-collecting Steiner tree and TSP. SIAM J. Comput. 40, 309–332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for \(k\)-median and facility location problems. SIAM J. Comput. 33, 544–562 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the prize collecting traveling salesman problem. Math. Program. 59, 413–420 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multiprocessor scheduling with rejection. SIAM J. Discrete Math. 13, 64–78 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for \(k\)-median, and positive correlation in budgeted optimization. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 737–756 (2015)

    Google Scholar 

  6. Charikar, M., Guha, S., Tardos, É., Shmoys D.B.: A constant-factor approximation algorithm for the \(k\)-median problem. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pp. 1–10 (1999)

    Google Scholar 

  7. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 642–651 (2001)

    Google Scholar 

  8. Gupta, N., Gupta, S.: Approximation algorithms for capacitated facility location problem with penalties (2014). ArXiv: 1408.4944

  9. Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R.: A dependent LP-rounding approach for the k-median problem. In: Charikar, M., Li, S. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 194–205. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM. 50, 795–824 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and \(k\)-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM. 48, 274–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility location problems with linear/submodular penalties. Algorithmica 73, 460–482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on offline scheduling with rejection. J. Sched. 16, 3–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, P.: A new approximation algorithm for the \(k\)-facility location problem. Theor. Comput. Sci. 384, 126–135 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the first author is supported by Collaborative Innovation Center on Beijing Society-Buliding and Social Governance. The second author’s research is supported by NSFC (Nos. 11371001 and 11531014). The third author’s research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant 283106. The fourth author’s research is supported by NSFC (No. 11501412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachuan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Y., Xu, D., Du, D., Wu, C. (2015). Local Search Algorithms for k-Median and k-Facility Location Problems with Linear Penalties. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, DZ. (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science(), vol 9486. Springer, Cham. https://doi.org/10.1007/978-3-319-26626-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26626-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26625-1

  • Online ISBN: 978-3-319-26626-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics