Nothing Special   »   [go: up one dir, main page]

Skip to main content

Edge-Disjoint Packing of Stars and Cycles

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9486))

  • 1071 Accesses

Abstract

We study the parameterized complexity of two graph packing problems, Edge-Disjoint \(k\)-Packing of \(s\)-Stars and Edge-Disjoint \(k\)-Packing of \(s\)-Cycles. With respect to the choice of parameters, we show that although the two problems are FPT with both k and s as parameters, they are unlikely to be fixed-parameter tractable when parameterized by only k or only s. In terms of kernelization complexity, we show that Edge-Disjoint \(k\)-Packing of \(s\)-Stars has a kernel with size polynomial in both k and s, but in contrast, unless NP \(\subseteq \) coNP/poly, Edge-Disjoint \(k\)-Packing of \(s\)-Cycles does not have a kernel with size polynomial in both k and s, and moreover does not have a kernel with size polynomial in s for any fixed k. Specifically, (1) from the negative direction, we show that Edge-Disjoint \(k\)-Packing of \(s\)-Stars is W[1]-hard with parameter k in general graphs, and that Edge-Disjoint \(k\)-Packing of \(s\)-Cycles is W[1]-hard with parameter k and NP-hard for any even \(s \ge 4\) in bipartite graphs; (2) from the positive direction, we show that Edge-Disjoint \(k\)-Packing of \(s\)-Stars admits a \(ks^2\) kernel, and that Edge-Disjoint \(k\)-Packing of 4-Cycles admits a \(96k^2\) kernel in general graphs and a 96k kernel in planar graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the general problem of deciding whether a graph G contains k edge-disjoint copies of a graph H, the running time of this algorithm [5, Corollary 5.7] is \(4^{rk + O(\log ^3(rk))} n^{r+1}\), where n and r are the numbers of vertices in G and H, respectively. The \(n^{r+1}\) factor in the running time accounts for the time for solving the subproblem of determining whether G contains H as a subgraph, by brute force. The brute-force algorithm for this subproblem can be replaced by faster algorithms in our setting, with polynomial running time when H is an s-star, or \(2^{O(s)}\mathrm {poly}(n)\) time when H is an s-cycle [1].

  2. 2.

    We remark that in our setting of Edge-Disjoint \(k\)-Packing of \(s\)-Cycles, since any two different s-cycles share at most \(s-2\) edges, the base case of \(f(0,k) = 1\) in the analysis of [13, page 170] can be upgraded to \(f(1,k) = 1\), which saves 1 in the exponent and yields an \(O(k^{s-1})\) kernel.

  3. 3.

    We remark that the construction in our proof of Theorem 2 can be easily adapted to prove the hardness of all four variants of related problems on vertex/edge-disjoint cycles/paths.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM J. Comput. 25(2), 272–289 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Kneis, J., Lu, S., Molle, D., Richter, S., Rossmanith, P., Sze, S., Zhang, F.: Randomized divide-and-conquer: improved path, matching, and packing algorithms. SIAM J. Comput. 38(6), 2526–2547 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press Inc., New York (1987)

    Google Scholar 

  7. Colbourn, C.J.: Edge-packings of graphs and network reliability. Discrete Math. 72, 49–61 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    Book  MATH  Google Scholar 

  9. Dyer, M.E., Frieze, A.M.: On the complexity of partitioning graphs into connected subgraphs. Discrete Appl. Math. 10(2), 139–153 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feder, T., Subi, C.S.: Packing edge-disjoint triangles in given graphs. Electron. Colloquium Comput. Complex. (ECCC) 19, 13 (2012)

    Google Scholar 

  11. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser and Trotter’s local optimization theorem. J. Comput. Syst. Sci. 77(6), 1141–1158 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fellows, M.R., Heggernes, P., Rosamond, F.A., Sloper, C., Telle, J.A.: Finding \(k\) disjoint triangles in an arbitrary graph. In: Proceedings of the 30th International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 235–244 (2004)

    Google Scholar 

  13. Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. Algorithmica 52(2), 167–176 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  15. Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Heath, L.S., Vergara, J.P.C.: Edge-packing in planar graphs. Theor. Comput. Syst. 31, 629–662 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holyer, I.: The NP-completeness of some edge-partition problems. SIAM J. Comput. 10(4), 713–717 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci. 79, 39–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Masuyama, S., Ibaraki, T.: Chain packing in graphs. Algorithmica 6, 826–839 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mathieson, L., Prieto, E., Shaw, P.: Packing edge disjoint triangles: a parameterized view. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 127–137. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Moser, H.: A problem kernelization for graph packing. In 35th International Conference on Current Trends in Theory and Practice of Computer Science, pp. 401–412 (2009)

    Google Scholar 

  22. Prieto, E., Sloper, C.: Looking at the stars. Theor. Comput. Sci. 351(3), 437–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, J., Ning, D., Feng, Q., Chen, J.: An improved parameterized algorithm for a generalized matching problem. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 212–222. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Yang, Y.: Towards optimal kernel for edge-disjoint triangle packing. Inf. Process. Lett. 114(7), 344–348 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiang, M., Xia, G., Zhang, Y. (2015). Edge-Disjoint Packing of Stars and Cycles. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, DZ. (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science(), vol 9486. Springer, Cham. https://doi.org/10.1007/978-3-319-26626-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26626-8_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26625-1

  • Online ISBN: 978-3-319-26626-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics