Abstract
Given an edge-weighted graph G and a node subset R, the Steiner tree problem asks for an R-spanning tree of minimum weight. There are several strong approximation algorithms for this NP-hard problem, but research on their practicality is still in its early stages.
In this study, we investigate how the behavior of approximation algorithms changes when applying preprocessing routines first. In particular, the shrunken instances allow us to consider algorithm parameterizations that have been impractical before, shedding new light on the algorithms’ respective drawbacks and benefits.
Funded by project CH 897/1-1 of the German Research Foundation (DFG).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
This word order and abbreviation is historically common, to avoid conflicts with the established abbreviation ‘MST’ for minimum spanning tree.
- 4.
Those results were obtained on different machines, with different preprocessing and memory limits. The machines are compared via the DIMACS benchmark [6]; higher is faster. We: \(\underline{375}\), 16 GB limit. PUW [17]: \(\underline{389}\), no (relevant) limit. [19]: \(\underline{307}\), no limit. All success rates are reported with respect to a 1-hour time limit.
References
Beyer, S., Chimani, M.: Steiner tree 1.39-approximation in practice. In: Hliněný, P., Dvořák, Z., Jaroš, J., Kofroň, J., Kořenek, J., Matula, P., Pala, K. (eds.) MEMICS 2014. LNCS, vol. 8934, pp. 60–72. Springer, Heidelberg (2014)
Beyer, S., Chimani, M.: Strong Steiner Tree Approximations inPractice. Submitted to Journal (2014). http://arxiv.org/abs/1409.8318
Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)
Chimani, M., Woste, M.: Contraction-based Steiner tree approximations in practice. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 40–49. Springer, Heidelberg (2011)
Ciebiera, K., Godlewski, P., Sankowski, P., Wygocki, P.: Approximation Algorithms for Steiner Tree Problems Based on Universal Solution Frameworks. arXiv abs/1410.7534 (2014). http://arxiv.org/abs/1410.7534
11th DIMACS Challenge. http://dimacs11.cs.princeton.edu. Bounds 12 September 2014
Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–207 (1971)
Fischetti, M., Leitner, M., Ljubic, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., Sinnl, M.: Thinning out Steiner trees: a node-based model for uniform edge costs. In: 11th DIMACS Challenge (2014)
Goemans, M.X., Olver, N., Rothvoß, T., Zenklusen, R.: Matroids and integrality gaps for hypergraphic steiner tree relaxations. In: STOC 2012, pp. 1161–1176. ACM (2012)
Junger, M., Thienel, S.: The ABACUS system for branch-and-cut-and-price algorithms in integer programming and combinatorial optimization. Softw.: Pract. Exp. 30, 1325–1352 (2000)
Koch, T., Martin, A., Voß, S.: SteinLib: An Updated Library on Steiner Tree Problems in Graphs. ZIB-Report 00–37 (2000). http://steinlib.zib.de
Kou, L.T., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15, 141–145 (1981)
Ljubic, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. Math. Program. 105(2–3), 427–449 (2006)
Mehlhorn, K.: A faster approximation algorithm for the steiner problem in graphs. Inf. Process. Lett. 27(3), 125–128 (1988)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. In: STOC 1988, 229–234. ACM (1988)
Poggi de Aragão, M., Ribeiro, C.C., Uchoa, E., Werneck, R.F.: Hybrid local search for the steiner problem in graphs. In: MIC 2001 (2001)
Pajor, T., Uchoa, E., Werneck, R.F.: A robust and scalable algorithm for the Steiner problem in graphs. In: 11th DIMACS Challenge (2014)
Polzin, T., Vahdati Daneshmand, S.: Improved algorithms for the Steiner problem in networks. Discrete Appl. Math. 112(1–3), 263–300 (2001)
Polzin, T., Vahdati Daneshmand, S.: The Steiner tree challenge: an updated study. In: 11th DIMACS Challenge (2014)
Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation. SIAM J. Discrete Math. 19(1), 122–134 (2005)
Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem in graphs. Math. Jpn. 24, 573–577 (1980)
Zelikovsky, A.: An 11/6-approximation algorithm for the Steiner problem on graphs. Ann. Discrete Math. 51, 351–354 (1992)
Zelikovsky, A.: A faster approximation algorithm for the Steiner tree problem in graphs. Inf. Process. Lett. 46(2), 79–83 (1993)
Zelikovsky, A.: An 11/6-approximation algorithm for the network Steiner problem. Algorithmica 9(5), 463–470 (1993)
Zelikovsky, A.: Better Approximation Bounds for the Network and Euclidean Steiner Tree Problems. Technical report. CS-96-06, University of Virginia (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
A Distribution of Solution Values
For each of the three specific instances below, we generated 2000 shufflings. The plots below show the distribution of the corresponding TM solution values.
B More Detailed Table for Influence of Preprocessing
The table below shows detailed information (number of instances, average \(\chi \) in %, and statistical data on the gaps) averaged over the instance groupings proposed in [2]. Statistical data is: the mean \(\mu \) of the gaps (averaged and how often it was better, not changed, or worse); the deviation \(\sigma \), and the skewness (how often it was negative, zero, or positive). All data is given for original and preprocessed instances; for each instance we consider 50 different random shufflings.
Group | # | avg\(\chi \) | avg \(\mu \) | # \(\mu \) | avg \(\sigma \) | # orig skew | # prep skew | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
orig | prep | b | n | w | orig | prep | \(<0\) | \(=0\) | \(>0\) | \(<0\) | \(=0\) | \(>0\) | |||
EuclidSparse | 15 | 73.68 | 13.06 | 13.73 | 6 | 1 | 8 | 15.43 | 17.01 | 0 | 1 | 14 | 0 | 2 | 13 |
EuclidComplete | 14 | 21.11 | 10.84 | 10.84 | 0 | 14 | 0 | 13.06 | 13.06 | 0 | 1 | 13 | 0 | 1 | 13 |
RandomSparse | 96 | 30.41 | 25.52 | 22.26 | 64 | 12 | 20 | 21.58 | 19.00 | 1 | 11 | 84 | 1 | 24 | 71 |
RandomComplete | 13 | 9.75 | 31.90 | 25.14 | 7 | 2 | 4 | 28.53 | 20.86 | 0 | 2 | 11 | 0 | 6 | 7 |
IncidenceSparse | 280 | 84.44 | 133.47 | 127.36 | 154 | 50 | 76 | 53.82 | 50.68 | 2 | 2 | 276 | 3 | 2 | 275 |
IncidenceComplete | 73 | 97.84 | 393.61 | 393.61 | 0 | 73 | 0 | 88.51 | 88.51 | 0 | 0 | 73 | 0 | 0 | 73 |
ConstructedSparse | 9 | 85.57 | 143.19 | 141.86 | 5 | 1 | 3 | 50.48 | 51.54 | 0 | 1 | 8 | 0 | 1 | 8 |
SimpleRectilinear | 218 | 46.45 | 16.35 | 12.53 | 158 | 17 | 43 | 16.86 | 13.90 | 1 | 22 | 195 | 0 | 37 | 181 |
HardRectilinear | 54 | 64.27 | 23.04 | 19.40 | 52 | 0 | 2 | 20.88 | 19.30 | 0 | 0 | 54 | 0 | 0 | 54 |
VLSI / Grid | 206 | 92.36 | 35.49 | 35.76 | 100 | 12 | 94 | 27.36 | 27.13 | 1 | 6 | 199 | 1 | 5 | 200 |
WireRouting | 115 | 98.48 | 0.01 | 0.02 | 28 | 1 | 86 | 0.44 | 0.51 | 0 | 5 | 110 | 0 | 5 | 110 |
Coverage 10 | 531 | 86.77 | 73.09 | 71.42 | 223 | 84 | 224 | 33.69 | 32.75 | 3 | 16 | 512 | 4 | 20 | 507 |
Coverage 20 | 130 | 78.27 | 118.35 | 115.13 | 56 | 34 | 40 | 40.16 | 38.50 | 1 | 7 | 122 | 1 | 8 | 121 |
Coverage 30 | 127 | 78.92 | 184.86 | 179.50 | 62 | 41 | 24 | 55.90 | 52.67 | 0 | 4 | 123 | 0 | 7 | 120 |
Coverage 40 | 91 | 71.20 | 25.46 | 21.50 | 73 | 1 | 17 | 22.79 | 20.82 | 0 | 0 | 91 | 0 | 0 | 91 |
Coverage 50 | 119 | 45.51 | 16.15 | 12.46 | 90 | 5 | 24 | 17.17 | 14.32 | 0 | 1 | 118 | 0 | 9 | 110 |
Coverage 60 | 41 | 32.33 | 13.61 | 9.44 | 36 | 1 | 4 | 15.09 | 10.88 | 1 | 2 | 38 | 0 | 12 | 29 |
Coverage 70 | 18 | 14.77 | 8.01 | 3.60 | 12 | 4 | 2 | 9.62 | 6.04 | 0 | 8 | 10 | 0 | 8 | 10 |
Coverage 80 | 11 | 9.06 | 4.89 | 3.09 | 5 | 6 | 0 | 6.56 | 4.56 | 0 | 6 | 5 | 0 | 6 | 5 |
Coverage 90 | 14 | 5.87 | 3.47 | 1.95 | 11 | 2 | 1 | 7.32 | 5.02 | 0 | 2 | 12 | 0 | 4 | 10 |
Coverage 100 | 11 | 0.75 | 1.11 | 0.22 | 6 | 5 | 0 | 3.31 | 0.89 | 0 | 5 | 6 | 0 | 9 | 2 |
All | 1093 | 73.15 | 75.69 | 72.86 | 574 | 183 | 336 | 32.32 | 30.53 | 5 | 51 | 1037 | 5 | 83 | 1005 |
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Beyer, S., Chimani, M. (2015). The Influence of Preprocessing on Steiner Tree Approximations. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, DZ. (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science(), vol 9486. Springer, Cham. https://doi.org/10.1007/978-3-319-26626-8_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-26626-8_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26625-1
Online ISBN: 978-3-319-26626-8
eBook Packages: Computer ScienceComputer Science (R0)