Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exploring Relative Motion Features for Gait Recognition with Kinect

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9492))

Included in the following conference series:

  • 2358 Accesses

Abstract

Gait is a very important biometric technology for human recognition. Gait feature can be divided into two categories: static and dynamic. Many previous works argue that, although motion reflects the essential nature of gait, the recognition performance based purely on the motion feature is limited. The root cause of the limited performance is however not yet to understand. In this paper, we study the gait recognition with motion feature by Kinect and show that, with a novel representation, the motion feature is still effective to distinguish the gaits from different human beings. In particular, relative distance-based motion features are proposed, which are extracted without calculating the gait cycle. Experimental results show that the accuracy of recognition with relative motion features is up to 85 %, which is comparable to that of static features. By combining the relative motion features and the static ones, the accuracy is above 95 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  2. Jain, A.K., Hong, L., Pankanti, S., Bolle, R.: An identity-authentication system using fingerprints. Proc. IEEE 85(9), 1365–1388 (1997)

    Article  Google Scholar 

  3. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)

    Article  Google Scholar 

  4. Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. In: IET Conference Proceedings, p. 2. (2009)

    Google Scholar 

  5. Wang, C., Zhang, J., Pu, J., Yuan, X., Wang, L.: Chrono-gait image: a novel temporal template for gait recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 257–270. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Cunado, D., Nixon, M.S., Carter, J.N.: Using gait as a biometric, via phase-weighted magnitude spectra. In: Bigün, J., Chollet, G., Borgefors, G. (eds.) AVBPA 1997. LNCS, vol. 1206, pp. 93–102. Springer, Heidelberg (1997)

    Google Scholar 

  7. Yoo, J.H., Nixon, M.S., Harris, C.J.: Extracting gait signatures based on anatomical knowledge. In: Proceedings of BMVA Symposium on Advancing Biometric Technologies, London, UK, pp. 596–606 (2002)

    Google Scholar 

  8. Preis, J., Kessel, M., Werner, M., Linnhoff-Popien, C.: Gait recognition with kinect. In: 1st International Workshop on Kinect in Pervasive Computing (2012)

    Google Scholar 

  9. Andersson, V., Araujo, R.: Person identification using anthropometric and gait data from kinect sensor. In: Proceedings of the Twenty-Ninth Association for the Advancement of Artificial Intelligence Conference. AAAI (2015)

    Google Scholar 

  10. Ball, A., Rye, D., Ramos, F., Velonaki, M., March.: Unsupervised clustering of people from ‘skeleton’ data. In: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 225–226. ACM (2012)

    Google Scholar 

  11. Ahmed, M., Al-Jawad, N., Sabir, A.: Gait recognition based on Kinect sensor. In: SPIE Photonics Europe, p. 91390B. International Society for Optics and Photonics (2014)

    Google Scholar 

  12. Chattopadhyay, P., Sural, S., Mukherjee, J.: Frontal gait recognition from incomplete sequences using RGB-D camera. IEEE Trans. Inf. Forensics Secur. 9(11), 1843–1856 (2014). IEEE Biometrics Compendium

    Article  Google Scholar 

  13. Araujo, R.M., Graña, G., Andersson, V.: Towards skeleton biometric identification using the Microsoft kinect sensor. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 21–26. ACM (2013)

    Google Scholar 

  14. Guan, Y., Li, C.-T., Roli, F.: On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1521–1528 (2015)

    Google Scholar 

  15. Veeraraghavan, A., Roy-Chowdhury, A.K., Chellappa, R.: Matching shape sequences in video with applications in human movement analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1896–1909 (2005)

    Article  Google Scholar 

  16. Lombardi, S., Nishino, K., Makihara, Y., Yagi, Y.: Two-point gait: decoupling gait from body shape. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1041–1048. IEEE, December 2013

    Google Scholar 

  17. Phillips, P.J., Sarkar, S., Robledo, I., Grother, P., Bowyer, K.: The gait identification challenge problem: data sets and baseline algorithm. In: Proceedings of the 16th International Conference on Pattern Recognition, pp. 385–388. IEEE (2002)

    Google Scholar 

  18. Bouchrika, I., Goffredo, M., Carter, J., Nixon, M.: On using gait in forensic biometrics. J. Forensic Sci. 56(4), 882–889 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National High Technology Research and Development Program of China under No. 2012AA012706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, K., Dou, Y., Lv, S., Zhang, F. (2015). Exploring Relative Motion Features for Gait Recognition with Kinect. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9492. Springer, Cham. https://doi.org/10.1007/978-3-319-26561-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26561-2_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26560-5

  • Online ISBN: 978-3-319-26561-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics