Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abnormal Activity Detection Using Spatio-Temporal Feature and Laplacian Sparse Representation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9492))

Included in the following conference series:

Abstract

Abnormal activity detection in a video is a challenging and attractive task. In this paper, an approach using spatio-temporal feature and Laplacian sparse representation is proposed to tackle this problem. To detect the abnormal activity, we first detect interest points of a query video in the spatio-temporal domain. Then normalized combinational vectors, named HNF, are computed around the detected space-time interest points to characterize the video. After that, we utilize the Laplacian sparse representation framework and maximum pooling method to gain a more discriminative feature vector from the HNF set. Finally, the support vector machine (SVM) is adopted to classify the feature vector as normal or abnormal. Experiments on two datasets demonstrate the satisfactory performance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  2. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  3. Gao, S., Tsang, I.W., Chia, L.T., Zhao, P.: Local features are not lonely-laplacian sparse coding for image classification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3555–3561. IEEE (2010)

    Google Scholar 

  4. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  5. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)

    Article  Google Scholar 

  6. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  7. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in neural information processing systems, pp. 801–808 (2006)

    Google Scholar 

  8. Mehran, R., Moore, B.E., Shah, M.: A streakline representation of flow in crowded scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 439–452. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 935–942. IEEE (2009)

    Google Scholar 

  10. Bermejo Nievas, E., Deniz Suarez, O., Bueno García, G., Sukthankar, R.: Violence detection in video using computer vision techniques. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part II. LNCS, vol. 6855, pp. 332–339. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. de Souza, F.D.M., Chávez, G.C., do Valle, E., Araujo, D.A., et al.: Violence detection in video using spatio-temporal features. In: 2010 23rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 224–230. IEEE (2010)

    Google Scholar 

  12. Xu, L., Gong, C., Yang, J., Wu, Q., Yao, L.: Violent video detection based on mosift feature and sparse coding. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3538–3542. IEEE (2014)

    Google Scholar 

Download references

Ackonwledgements

This research is partly supported by NSFC, China (No: 61273258) and 863 Plan, China (No. 2015AA042308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, Y., Qiao, Y., Yang, J., Kasabov, N. (2015). Abnormal Activity Detection Using Spatio-Temporal Feature and Laplacian Sparse Representation. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9492. Springer, Cham. https://doi.org/10.1007/978-3-319-26561-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26561-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26560-5

  • Online ISBN: 978-3-319-26561-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics