Nothing Special   »   [go: up one dir, main page]

Skip to main content

XaIBO: An Extension of aIB for Trajectory Clustering with Outlier

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9490))

Included in the following conference series:

Abstract

Clustering plays an important role for trajectory analysis. The agglomerative Information Bottleneck (aIB) approach is effective for successfully managing an optimum number of clusters without the need of an explicit measure of trajectory distance, which is usually very difficult to be defined. In this paper, we propose to utilize a statistically representation of the trajectory shape to perform the aIB based trajectory clustering. In addition, an extension of aIB is proposed to cope with the clustering on trajectories with outliers (for brevity, we call this extended version of aIB as XaIBO) and in this case, XaIBO can be widely used in practice for dealing with complex trajectory data. Extensive experiments on synthetic, simulated and real trajectory data have shown that XaIBO achieves the trajectory clustering very well.

This work has been funded by Natural Science Foundation of China (61471261, 61179067, U1333110), and by grants TIN2013-47276-C6-1-R from Spanish Government and 2014-SGR-1232 from Catalan Government (Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://avires.dimi.uniud.it/papers/trclust.

  2. 2.

    http://cvrr.ucsd.edu/bmorris/datasets/dataset_trajectory_analysis.html.

References

  1. Dang, X.H., Bailey, J.: Generation of alternative clusterings using the cami approach. In: SDM, vol. 10, pp. 118–129. SIAM (2010)

    Google Scholar 

  2. Goldberger, J., Gordon, S., Greenspan, H.: Unsupervised image-set clustering using an information theoretic framework. IEEE Trans. Image Process. 15(2), 449–458 (2006)

    Article  Google Scholar 

  3. Guo, Y., Xu, Q., Yang, Y., Liang, S., Liu, Y., Sbert, M.: Anomaly detection based on trajectory analysis using kernel density estimation and information bottleneck techniques. Technical report 108, University of Girona (2014)

    Google Scholar 

  4. Hromic, H., Prangnawarat, N., Hulpuş, I., Karnstedt, M., Hayes, C.: Graph-based methods for clustering topics of interest in twitter. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 701–704. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  5. Annoni Jr., R., Forster, C.H.Q.: Analysis of aircraft trajectories using fourier descriptors and kernel density estimation. In: Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems, pp. 1441–1446 (2012)

    Google Scholar 

  6. Laxhammar, R., Falkman, G.: Online learning and sequential anomaly detection in trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1158–1173 (2014)

    Article  MATH  Google Scholar 

  7. May, R., Hanrahan, P., Keim, D.A., Shneiderman, B., Card, S.: The state of visual analytics: views on what visual analytics is and where it is going. In: IEEE Symposium on Visual Analytics Science and Technology (VAST). pp. 257–259. IEEE, Salt Lake City, UT (2010)

    Google Scholar 

  8. Morris, B.T., Trivedi, M.M.: Trajectory learning for activity understanding: unsupervised, multilevel, and long-term adaptive approach. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2287–2301 (2011)

    Article  Google Scholar 

  9. Morris, B.T., Trivedi, M.M.: Understanding vehicular traffic behavior from video: a survey of unsupervised approaches. J. Electron. Imaging 22(4), 041113–041113 (2013)

    Article  Google Scholar 

  10. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1544–1554 (2008)

    Article  Google Scholar 

  11. Schneidman, E., Slonim, N., Tishby, N., deRuyter van Steveninck, R., Bialek, W.: Analyzing neural codes using the information bottleneck method. In: Advances in Neural Information Processing Systems 15 (2002)

    Google Scholar 

  12. Slonim, N.: The information bottleneck: Theory and applications. Ph.D. thesis, Hebrew University of Jerusalem (2002)

    Google Scholar 

  13. Slonim, N., Somerville, R., Tishby, N., Lahav, O.: Objective classification of galaxy spectra using the information bottleneck method. Mon. Not. R. Astron. Soc. 323(2), 270–284 (2001)

    Article  Google Scholar 

  14. Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: Advances in Neural Information Processing Systems, vol. 12, pp. 617–623. Citeseer (1999)

    Google Scholar 

  15. Slonim, N., Tishby, N.: Document clustering using word clusters via the information bottleneck method. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 208–215. ACM (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Guo, Y., Xu, Q., Liang, S., Fan, Y., Sbert, M. (2015). XaIBO: An Extension of aIB for Trajectory Clustering with Outlier. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9490. Springer, Cham. https://doi.org/10.1007/978-3-319-26535-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26535-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26534-6

  • Online ISBN: 978-3-319-26535-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics