Nothing Special   »   [go: up one dir, main page]

Skip to main content

Spin-Based CMOS-Compatible Devices

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9374))

Included in the following conference series:

Abstract

With CMOS feature size rapidly approaching scaling limits the electron spin attracts attention as an alternative degree of freedom for low-power non-volatile devices. Silicon is perfectly suited for spin-driven applications, because it is mostly composed of nuclei without spin and is characterized by weak spin-orbit interaction. Elliot-Yafet spin relaxation due to phonons’ mediated scattering is the main mechanism in bulk silicon at room temperature. Uniaxial stress dramatically reduces the spin relaxation, particularly in thin silicon films. Lifting the valley degeneracy completely in a controllable way by means of standard stress techniques represents a major breakthrough for spin-based devices. Despite impressive progress regarding spin injection, the larger than predicted signal amplitude is still heavily debated. In addition, the absence of a viable concept of spin manipulation in the channel by electrical means makes a practical realization of a device working similar to a MOSFET difficult. An experimental demonstration of such a spin field-effect transistor (SpinFET) is pending for 25 years now, which at present is a strong motivation for researchers to look into the subject. Commercially available CMOS compatible spin-transfer torque magnetic random access memory (MRAM) built on magnetic tunnel junctions possesses all properties characteristic to universal memory: fast operation, high density, and non-volatility. The critical current for magnetization switching and the thermal stability are the main issues to be addressed. A substantial reduction of the critical current density and a considerable increase of the thermal stability are achieved in structures with a recording layer between two vertically sandwiched layers, where the recording layer is composed of two parts in the same plane next to each other. MRAM can be used to build logic-in-memory architectures with non-volatile storage elements on top of CMOS logic circuits. Non-volatility and reduced interconnect losses guarantee low-power consumption. A novel concept for non-volatile logic-in-memory circuits utilizing the same MRAM cells to store and process information simultaneously is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Appelbaum, I., Huang, B., Monsma, D.J.: Electronic measurement and control of spin transport in Silicon. Nature 447, 295–298 (2007)

    Article  Google Scholar 

  2. Huang, B., Monsma, D.J., Appelbaum, I.: Coherent spin transport through a 350 micron thick silicon wafer. Phys. Rev. Lett. 99, 177209 (2007)

    Article  Google Scholar 

  3. Jansen, R.: Silicon spintronics. Nat. Mater. 11, 400–408 (2012)

    Article  Google Scholar 

  4. Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

    Article  Google Scholar 

  5. Sugahara, S., Nitta, J.: Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124–2154 (2010)

    Article  Google Scholar 

  6. Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., van Wees, B.J.: Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000)

    Article  Google Scholar 

  7. Rashba, E.I.: Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000)

    Article  Google Scholar 

  8. Dash, S.P., Sharma, S., Patel, R.S., de Jong, M.P., Jansen, R.: Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009)

    Article  Google Scholar 

  9. Li, C., van’t Erve, O., Jonker, B.: Electrical injection and detection of spin accumulation in silicon at 500K with magnetic metal/silicon dioxide contacts. Nat. Commun. 2, 245 (2011)

    Article  Google Scholar 

  10. Jansen, R., Deac, A.M., Saito, H., Yuasa, S.: Injection and detection of spin in a semiconductor by tunneling via interface states. Phys. Rev. B 85, 134420 (2012)

    Article  Google Scholar 

  11. Song, Y., Dery, H.: Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions. Phys. Rev. Lett. 113, 047205 (2014)

    Article  Google Scholar 

  12. Zutic, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  Google Scholar 

  13. Fabian, J., Matos-Abiaguea, A., Ertler, C., Stano, P., Zutic, I.: Semiconductor spintronics. Acta Phys. Slovaca 57, 565–907 (2007)

    Article  Google Scholar 

  14. Cheng, J.L., Wu, M.W., Fabian, J.: Theory of the spin relaxation of conduction electrons in silicon. Phys. Rev. Lett. 104, 016601 (2010)

    Article  Google Scholar 

  15. Li, P., Dery, H.: Spin-orbit symmetries of conduction electrons in silicon. Phys. Rev. Lett. 107, 107203 (2011)

    Article  Google Scholar 

  16. Song, Y., Dery, H.: Analysis of phonon-induced spin relaxation processes in silicon. Phys. Rev. B 86, 085201 (2012)

    Article  Google Scholar 

  17. Li, J., Appelbaum, I.: Modeling spin transport in electrostatically-gated lateral-channel silicon devices: role of interfacial spin relaxation. Phys. Rev. B 84, 165318 (2011)

    Article  Google Scholar 

  18. Li, J., Appelbaum, I.: Lateral spin transport through bulk silicon. Appl. Phys. Lett. 100, 162408 (2012)

    Article  Google Scholar 

  19. Osintsev, D., Baumgartner, O., Stanojevic, Z., Sverdlov, V., Selberherr, S.: Subband splitting and surface roughness induced spin relaxation in (001) silicon SOI MOSFETs. Solid-State Electron. 90, 34–38 (2013)

    Article  Google Scholar 

  20. Sverdlov, V.: Strain-Induced Effects in Advanced MOSFETs. Springer, Wien - New York (2011)

    Book  Google Scholar 

  21. Jancu, J.M., Girard, J.C., Nestoklon, M.O., Lemaître, A., Glas, F., Wang, Z.Z., Voisin, P.: STM images of subsurface Mn Atoms in GaAs: evidence of hybridization of surface and impurity states. Phys. Rev. Lett. 101, 196801 (2008)

    Article  Google Scholar 

  22. Prada, M., Klimeck, G., Joynt, R.: Spin-orbit splittings in Si/SiGe quantum wells: from ideal Si membranes to realistic heterostructures. New J. Phys. 13, 013009 (2011)

    Article  Google Scholar 

  23. Wilamowski, Z., Jantsch, W.: Suppression of spin relaxation of conduction electrons by cyclotron motion. Phys. Rev. B 69, 035328 (2004)

    Article  Google Scholar 

  24. Osintsev, D., Sverdlov, V., Stanojevi\(\grave{\rm c}\), Z., Makarov, A., Selberherr, S.: Temperature dependence of the transport properties of spin field-effect transistors built with InAs and Si channels. Solid-State Electron. 71, 25–29 (2012)

    Google Scholar 

  25. Slonczewski, J.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  Google Scholar 

  26. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  Google Scholar 

  27. Makarov, A., Sverdlov, V., Osintsev, D., Selberherr, S.: Reduction of switching time in pentalayer magnetic tunnel junctions with a composite-free layer. Phys. Status Solidi - Rapid Res. Lett. 5, 420–422 (2011)

    Article  Google Scholar 

  28. Makarov, A., Sverdlov, V., Selberherr, S.: Magnetic tunnel junctions with a composite free layer: a new concept for future universal memory. In: Luryi, S., Xu, J., Zaslavsky, A. (eds.) Future Trends in Microelectronics, pp. 93–101. Wiley, New York (2013)

    Chapter  Google Scholar 

  29. Makarov, A.: Modeling of emerging resistive switching based memory cells. Dissertation, Institute for Microelectronics, TU Wien (2014)

    Google Scholar 

  30. Endoh, T.: STT-MRAM technology and its NV-logic applications for ultimate power management. In: 2014 CMOS Emerging Technologies Research (CMOSETR), p. 14 (2014)

    Google Scholar 

  31. Natsui, M., Suzuki, D., Sakimura, N., Nebashi, R., Tsuji, Y., Morioka, A., Sugibayashi, T., Miura, S., Honjo, H., Kinoshita, K., Ikeda, S., Endoh, T., Ohno, H., Hanyu, T.: Nonvolatile logic-in-memory array processor in 90 nm MTJ/MOS achieving 75% leakage reduction using cycle-based power gating. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 194–195 (2013)

    Google Scholar 

  32. Lyle, A., Harms, J., Patil, S., Yao, X., Lilja, D.J., Wang, J.P.: Direct communication between magnetic tunnel junctions for nonvolatile logic fan-out architecture. Appl. Phys. Lett. 97, 152504 (2010)

    Article  Google Scholar 

  33. Lyle, A., Patil, S., Harms, J., Glass, B., Yao, X., Lilja, D., Wang, J.: Magnetic tunnel junction logic architecture for realization of simultaneous computation and communication. IEEE Trans. Magn. 47, 2970–2973 (2011)

    Article  Google Scholar 

  34. Mahmoudi, H., Windbacher, T., Sverdlov, V., Selberherr, S.: Implication logic gates using spin-transfer-torque-operated magnetic tunnel junctions for intrinsic logic-in-memory. Solid-State Electron. 84, 191–197 (2013)

    Article  Google Scholar 

  35. Borghetti, J., Snider, G., Kuekes, P., Yang, J., Stewart, D., Williams, R.: Memristive switches enable stateful logic operations via material implication. Nature 464, 873–876 (2010)

    Article  Google Scholar 

  36. Mahmoudi, H., Windbacher, T., Sverdlov, V., Selberherr, S.: Reliability analysis and comparison of implication and reprogrammable logic gates in magnetic tunnel junction logic circuits. IEEE Trans. Magn. 49, 5620–5628 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the European Research Council through the grant #247056 MOSILSPIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Sverdlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sverdlov, V., Selberherr, S. (2015). Spin-Based CMOS-Compatible Devices. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2015. Lecture Notes in Computer Science(), vol 9374. Springer, Cham. https://doi.org/10.1007/978-3-319-26520-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26520-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26519-3

  • Online ISBN: 978-3-319-26520-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics