Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Logic for Improving Interactive Evolutionary Computation Techniques for Ad Text Optimization

  • Conference paper
  • First Online:
Novel Developments in Uncertainty Representation and Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 401))

Abstract

The description of a product or an ad’s text can be rewritten in many ways if other text fragments similar in meaning substitute different words or phrases. A good selection of words or phrases, composing an ad, is very important for the creation of an advertisement text, as the meaning of the text depends on this and it affects in a positive or a negative way the interest of the possible consumers towards the advertised product. In this paper we present a method for the optimization of advertisement texts through the use of interactive evolutionary computing techniques. The EvoSpace platform is used to perform the evolution of a text, resulting in an optimized text, which should have a better impact on its readers in terms of persuasion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McQuarrie, Edward F., David, M.: Visual rhetoric in advertising: Text-interpretive, experimental, and reader-response analyses. J. Consum. Res. 26(1), 37–54 (1999)

    Article  Google Scholar 

  2. De Jong, K.A.: Evolutionary computation–a unified approach. MIT Press, Cambridge (2006)

    Google Scholar 

  3. Bäck, T.: Evolutionary Algorithms In Theory And Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, vol. 996. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  4. Whitley, D.: A genetic algorithm tutorial, Statistics and Computing, p. 65. Kluwer Academic Publishers 4.2, Norwell (1994)

    Google Scholar 

  5. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275 (2001)

    Article  Google Scholar 

  6. Malcolm, J.A., Peter L.: An approach to detecting article spinning. In: Proceedings of the Third International Conference on Plagiarism (2008)

    Google Scholar 

  7. García, M., et al.: EvoSpace: a distributed evolutionary platform based on the tuple space model. In: Applications of Evolutionary Computation, pp. 499–508. Springer, Berlin (2013)

    Google Scholar 

  8. Davis, H.: Google Advertising Tools: Cashing in with AdSense, AdWords, and the Google APIs. O’reilly, Cambridge (2006)

    Google Scholar 

  9. Fernández, F., et al.: EvoSpace-interactivo: una herramienta para el arte y diseño interactivo y colaborativo, pp. 220–228. Algoritmos Evolutivos y Bioinspirados, IX Congreso Español de Metaheurísticas (2013)

    Google Scholar 

  10. Chevrolet.: Chevrolet Mexico Ad description (2013). http://www.chevrolet.com.mx/spark-2014.html.Accessed 12 Dec 2013

  11. Hartigan, J.: Clustering Algorithms. Wiley, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quetzali Madera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Madera, Q., Garcia, M., Castillo, O. (2016). Fuzzy Logic for Improving Interactive Evolutionary Computation Techniques for Ad Text Optimization. In: Atanassov, K., et al. Novel Developments in Uncertainty Representation and Processing. Advances in Intelligent Systems and Computing, vol 401. Springer, Cham. https://doi.org/10.1007/978-3-319-26211-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26211-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26210-9

  • Online ISBN: 978-3-319-26211-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics