Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interaction-Based Aggregation of mRNA and miRNA Expression Profiles to Differentiate Myelodysplastic Syndrome

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 511))

  • 578 Accesses

Abstract

In this work we integrate conventional mRNA expression profiles with miRNA expressions using the knowledge of their validated or predicted interactions in order to improve class prediction in genetically determined diseases. The raw mRNA and miRNA expression features become enriched or replaced by new aggregated features that model the mRNA-miRNA interaction. The proposed subtractive integration method is directly motivated by the inhibition/degradation models of gene expression regulation. The method aggregates mRNA and miRNA expressions by subtracting a proportion of miRNA expression values from their respective target mRNAs. Further, its modification based on singular value decomposition that enables different subtractive weights for different miRNAs is introduced. Both the methods are used to model the outcome or development of myelodysplastic syndrome, a blood cell production disease often progressing to leukemia. The reached results demonstrate that the integration improves classification performance when dealing with mRNA and miRNA features of comparable significance. The proposed methods are available as a part of the web tool miXGENE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anděl, M., Kléma, J., Krejčík, Z.: Integrating mRNA and miRNA expressions with interaction knowledge to predict myelodysplastic syndrome. In: Information Technologies - Applications and Theory, Workshop on Bioinformatics in Genomics and Proteomics, ITAT 2013, pp. 48–55 (2013)

    Google Scholar 

  2. Brewster, J.L., Beason, K.B., Eckdahl, T.T., et al.: The microarray revolution: perspectives from educators. Biochem. Mol. Biol. Educ. 32(4), 217–227 (2004)

    Article  Google Scholar 

  3. Croce, C.M.: Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10(10), 704–714 (2009)

    Article  Google Scholar 

  4. Merkerova, M.D., Krejcik, Z., Votavova, H., et al.: Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur. J. Hum. Genet. 19(3), 313–319 (2011)

    Article  Google Scholar 

  5. Dweep, H., Sticht, C., Pandey, P., et al.: miRWalk - database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 44(5), 839–847 (2011)

    Article  Google Scholar 

  6. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–8 (1936)

    Article  MATH  Google Scholar 

  7. Fabian, M.R., Sonenberg, N.: The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19(6), 586–593 (2012)

    Article  Google Scholar 

  8. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  9. Holec, M., Gologuzov, V., Kléma, J.: miXGENE tool for learning from heterogeneous gene expression data using prior knowledge. In: Proceedings of the 27th IEEE International Symposium on Computer-Based Medical Systems 2014 (2014) (to appear)

    Google Scholar 

  10. Huang, G.T., Athanassiou, C., Benos, P.V.: mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Res. 39, W416–W423 (2011). Web Server issue

    Article  Google Scholar 

  11. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398. Springer, Heidelberg (1998)

    Google Scholar 

  12. Kim, D., Shin, H., Song, Y.S., et al.: Synergistic effect of different levels of genomic data for cancer clinical outcome prediction. J. Biomed. Inform. 45(6), 1191–1198 (2012)

    Article  Google Scholar 

  13. Kozomara, A., Griffiths-Jones, S.: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, 152–157 (2011). Database-Issue

    Article  Google Scholar 

  14. Krek, A., Grün, D., Poy, M.N., et al.: Combinatorial microRNA target predictions. Nat. Genet. 37(5), 495–500 (2005)

    Article  Google Scholar 

  15. Lanza, G., Ferracin, M., Gafà, R., et al.: mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer 6, 54 (2007)

    Article  Google Scholar 

  16. Lee, R.C., Feinbaum, R.L., Ambros, V.: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843–854 (1993)

    Article  Google Scholar 

  17. Lewis, B.P., Shih, I.H.H., et al.: Prediction of mammalian microRNA targets. Cell 115(7), 787–798 (2003)

    Article  Google Scholar 

  18. Li, W., Zhang, S.H., et al.: Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics 28(19), 2458–66 (2012)

    Article  Google Scholar 

  19. Morin, R., Bainbridge, M., Fejes, A., et al.: Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 45(1), 81–94 (2008)

    Article  Google Scholar 

  20. Peng, X., Li, Y., Walters, K.A., et al.: Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics 10(1), 373 (2009)

    Article  Google Scholar 

  21. Pollack, J.R., Sørlie, T., Perou, C.M., et al.: Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl. Acad. Sci. USA 99(20), 12963–12968 (2002)

    Article  Google Scholar 

  22. Rhyasen, G.W., Starczynowski, D.T.: Deregulation of microRNAs in myelodysplastic syndrome. Leukemia 26(1), 13–22 (2012)

    Article  Google Scholar 

  23. Sayed, D., Abdellatif, M.: MicroRNAs in development and disease. Physiol. Rev. 91(3), 827–887 (2011)

    Article  Google Scholar 

  24. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)

    Article  Google Scholar 

  25. Stranger, B.E., Forrest, M.S., Dunning, M., et al.: Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315(5813), 848–853 (2007)

    Article  Google Scholar 

  26. Tan Gana, N.H., Victoriano, A.F., Okamoto, T.: Evaluation of online miRNA resources for biomedical applications. Genes Cells 17(1), 11–27 (2012)

    Article  Google Scholar 

  27. Tran, D.H., Satou, K., Ho, T.B.: Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinform. 9(12), S5 (2008)

    Article  Google Scholar 

  28. Vašíková, A., Běličková, M., Budinská, E., et al.: A distinct expression of various gene subsets in cd34+ cells from patients with early and advanced myelodysplastic syndrome. Leuk. Res. 34(12), 1566–1572 (2010)

    Article  Google Scholar 

  29. Wang, X., Naqa, I.M.E.: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24(3), 325–332 (2008)

    Article  Google Scholar 

  30. Witten, D.M., Tibshirani, R.J.: Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol. Biol. 8(1), 28 (2009)

    MathSciNet  Google Scholar 

  31. Zhang, S.H., Li, Q., et al.: A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics 27(13), 401–409 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the grants NT14539 and NT1 4377 of the Ministry of Health of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Kléma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kléma, J., Zahálka, J., Anděl, M., Krejčík, Z. (2015). Interaction-Based Aggregation of mRNA and miRNA Expression Profiles to Differentiate Myelodysplastic Syndrome. In: Plantier, G., Schultz, T., Fred, A., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2014. Communications in Computer and Information Science, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-319-26129-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26129-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26128-7

  • Online ISBN: 978-3-319-26129-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics