Abstract
In this paper, we present a method to calibrate large scale camera networks for multi-camera computer vision applications in soccer scenes. The calibration process determines camera parameters, both within each camera (focal length, principal point, etc.) and inbetween the cameras (their relative position and orientation). We first extract candidate image correspondences over adjacent cameras, without using any calibration object, relying on existing feature matching methods. We then combine these pairwise camera feature matches over all adjacent cameras using a confident-based voting mechanism and a selection relying on the general displacement across the images. Experiments show that this removes a large amount of outliers before using existing calibration toolboxes dedicated to small scale camera networks, that would otherwise fail to work properly in finding the correct camera parameters over large scale camera networks. We succesfully validate our method on real soccer scenes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grau, O., Prior-Jones, M., Thomas, G.: 3D modelling and rendering of studio and sport scenes for TV applications. In: Proceedings of the 6th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), Montreux, Switzerland (2005)
Ohta, Y., Kitahara, I., Kameda, Y., Ishikawa, H., Koyama, T.: Live 3D video in soccer stadium. Int. J. Comput. Vis. 75, 173–187 (2007)
Goorts, P., Maesen, S., Dumont, M., Rogmans, S., Bekaert, P.: Free viewpoint video for soccer using histogram-based validity maps in plane sweeping. In: Proceedings of the Ninth International Conference on Computer Vision Theory and Applications (VISAPP). INSTICC, Lisbon, Portugal (2014)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)
Svoboda, T., Martinec, D., Pajdla, T.: A convenient multicamera self-calibration for virtual environments. PRESENCE: Teleoperators Virtual Environ. 14, 407–422 (2005)
Farin, D., Krabbe, S., de With, P.H., Effelsberg, W.: Robust camera calibration for sport videos using court models. In: Proceedings of SPIE, Storage and Retrieval Methods and Applications for Multimedia, vol. 5307, San Jose, CA, pp. 80–91 (2003)
Farin, D., Han, J., de With, P.H.: Fast camera calibration for the analysis of sport sequences. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), pp. 1–4. IEEE, Amsterdam (2005)
Li, Q., Luo, Y.: Automatic camera calibration for images of soccer match. In: Proceedings of the International Conference on Computational Intelligence, Istanbul, Turkey, pp. 482–485 (2004)
Yu, X., Jiang, N., Cheong, L.F., Leong, H.W., Yan, X.: Automatic camera calibration of broadcast tennis video with applications to 3D virtual content insertion and ball detection and tracking. Comput. Vis. Image Underst. 113, 643–652 (2009)
Hayet, J.B., Piater, J.H., Verly, J.G.: Fast 2D model-to-image registration using vanishing points for sports video analysis. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), Genoa, Italy, pp. 417–420 (2005)
Thomas, G.: Real-time camera tracking using sports pitch markings. J. Real-Time Image Proc. 2, 117–132 (2007)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)
Yang, R., Welch, G., Bishop, G.: Real-time consensus-based scene reconstruction using commodity graphics hardware. Comput. Graph. Forum 22, 207–216 (2003)
Goorts, P., Ancuti, C., Dumont, M., Bekaert, P.: Real-time video-based view interpolation of soccer events using depth-selective plane sweeping. In: Proceedings of the Eight International Conference on Computer Vision Theory and Applications (VISAPP 2013), pp. 131–137. INSTICC, Barcelona (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Goorts, P., Maesen, S., Liu, Y., Dumont, M., Bekaert, P., Lafruit, G. (2015). Automatic Calibration of Soccer Scenes Using Feature Detection. In: Obaidat, M., Holzinger, A., Filipe, J. (eds) E-Business and Telecommunications. ICETE 2014. Communications in Computer and Information Science, vol 554. Springer, Cham. https://doi.org/10.1007/978-3-319-25915-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-25915-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25914-7
Online ISBN: 978-3-319-25915-4
eBook Packages: Computer ScienceComputer Science (R0)