Abstract
In this paper, magnetic resonance image similarity metrics based on generative model induced spaces are introduced. Particularly, three generative-based similarities are proposed. Metrics are tested in an atlas selection task for multi-atlas-based image segmentation of basal ganglia structure, and compared with the mean square metric, as it is assessed on the high dimensional image domain. Attained results show that our proposal provides a suitable atlas selection and improves the segmentation of the structures of interest.
Chapter PDF
Similar content being viewed by others
Keywords
References
Despotovic, I., Vansteenkiste, E., Philips, W.: Brain volume segmentation in newborn infants using multi-modal mri with a low inter-slice resolution. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2010, pp. 5038–5041 (2010)
Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46(3), 726–738 (2009)
Cárdenas-Peña, D., Orbes-Arteaga, M., Castellanos-Dominguez, G.: Supervised brain tissue segmentation using a spatially enhanced similarity metric. In: Vicente, J.M.F., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) Artificial Computation in Biology and Medicine. LNCS, vol. 9107, pp. 398–407. Springer, Heidelberg (2015)
Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de Solorzano, C.: Combination strategies in multi-atlas image segmentation: application to brain mr data. IEEE Transactions on Medical Imaging 28(8), 1266–1277 (2009)
Langerak, T.R., Berendsen, F.F., Van der Heide, U.A., Kotte, A.N.T.J., Pluim, J.P.W.: Multiatlas-based segmentation with preregistration atlas selection. Medical Physics 40(9), 091701 (2013)
Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D.: Leap: learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)
Cao, Y., Yuan, Y., Li, X., Turkbey, B., Choyke, P.L., Yan, P.: Segmenting images by combining selected atlases on manifold. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 272–279. Springer, Heidelberg (2011)
Bicego, M., Murino, V., Figueiredo, M.A.T.: Similarity-based classification of sequences using hidden markov models. Pattern Recognition 37, 2281–2291 (2004)
Álvarez Meza, A.M., Cárdenas-Peña, D., Castellanos-Dominguez, G. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications SE - 41
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Orbes-Arteaga, M., Cárdenas-Peña, D., Álvarez, M.A., Orozco, A.A., Castellanos-Dominguez, G. (2015). Magnetic Resonance Image Selection for Multi-Atlas Segmentation Using Mixture Models. In: Pardo, A., Kittler, J. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2015. Lecture Notes in Computer Science(), vol 9423. Springer, Cham. https://doi.org/10.1007/978-3-319-25751-8_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-25751-8_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25750-1
Online ISBN: 978-3-319-25751-8
eBook Packages: Computer ScienceComputer Science (R0)