Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Origin of Dance: Evolutionary Significance on Ritualized Movements of Animals

  • Chapter
  • First Online:
Dance Notations and Robot Motion

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 111))

Abstract

Dance is not a human-specific behavior. It is well known that some non-human animals perform “dances” for various purposes, some of which are related to food acquisition and courtship. According to the traditional Darwin’s evolutionary paradigm, our genetic information is subject to natural selections, or more boldly speaking, a principle of “survival of the fittest.” In these contexts, dance or ritualized movements performed by animals should have clear evolutionary traits. For example, some birds perform ritual dances to draw attentions of the opposite sex to mate with. Under competitive circumstances, the “dance” should play a critical role for individuals to propagate their own genetic information in the population. However, recent studies also suggest that human has genes associated with creative dance performances, which are not directly relevant to the Darwinian selection. I will briefly describe behavioral characteristics of non-human “choreographed dances” and discuss their evolutionary significance, as well as similarity and difference between the non-human and human neurobehavioral characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Chimpanzee, C. Analysis, Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005)

    Article  Google Scholar 

  2. E.S. Savage-Rumbaugh, Verbal behavior at a procedural level in the chimpanzee. J. Exp. Anal. Behav. 41, 223–250 (1984)

    Article  Google Scholar 

  3. I. Roffman, E. Nevo, Can chimpanzee biology highlight human origin and evolution? Rambam Maimonides Med. J. 1, e0009 (2010)

    Article  Google Scholar 

  4. T. Romero, F.B. de Waal, Third-party postconflict affiliation of aggressors in chimpanzees. Am. J. Primatol. 73, 397–404 (2011)

    Article  Google Scholar 

  5. K. Harvati, The Neanderthal taxonomic position: models of intra- and inter-specific craniofacial variation. J. Hum. Evol. 44, 107–132 (2003)

    Article  Google Scholar 

  6. S.B. Carroll, Genetics and the making of Homo sapiens. Nature 422, 849–857 (2003)

    Google Scholar 

  7. R.G. Klein, Darwin and the recent African origin of modern humans. Proc. Natl. Acad. Sci. 106, 16007–16009 (2009)

    Article  Google Scholar 

  8. S. Sankararaman, S. Mallick, M. Dannemann, K. Prufer, J. Kelso, S. Paabo, et al., The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014)

    Google Scholar 

  9. R.E. Green, J. Krause, S.E. Ptak, A.W. Briggs, M.T. Ronan, J.F. Simons et al., Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336 (2006)

    Article  Google Scholar 

  10. F. d’Errico, C.B. Stringer, Evolution, revolution or saltation scenario for the emergence of modern cultures? Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 1060–1069 (2011)

    Article  Google Scholar 

  11. A.L. Kaeppler, Dance in anthropological perspective. Ann. Revi. Anthropol. 7, 31–49 (1978)

    Google Scholar 

  12. G.M. Morriss-Kay, The evolution of human artistic creativity. J. Anat. 216, 158–176 (2010)

    Article  Google Scholar 

  13. F.A. Issa, D.H. Edwards, Ritualized submission and the reduction of aggression in an invertebrate. Curr. Biol. 16, 2217–2221 (2006)

    Article  Google Scholar 

  14. J. Huxley, A discussion on ritualization of behaviour in animals and man. Philos. Trans. R. Soc. 251, 249–271 (1966)

    Article  Google Scholar 

  15. R. Huber, E.A. Kravitz, A quantitative analysis of agonistic behavior in juvenile American lobsters (Homarus americanus L.). Brain Behav. Evol. 46, 72–83 (1995)

    Article  Google Scholar 

  16. L. Gross, A new view of the waggle dance: making scents to recruit fellow foragers. PLoS Biol. 5, e249 (2007)

    Article  Google Scholar 

  17. R. Menzel, U. Greggers, A. Smith, S. Berger, R. Brandt, S. Brunke et al., Honey bees navigate according to a map-like spatial memory. Proc. Natl. Acad. Sci. USA 102, 3040–3045 (2005)

    Article  Google Scholar 

  18. K.V. Frisch, The dances of the honey bee. Bulletin of animal behaviour (translated from Die Tanze der Bienen (1946) Osterreiche Zoologie Zeitschrift 1:1–48) 5, 1–32 (1947)

    Google Scholar 

  19. E. Crist, Can an insect speak? The case of the honeybee dance language. Soc. Stud. Sci. 34, 7–43 (2004)

    Article  Google Scholar 

  20. A.B. Barron, R. Maleszka, R.K. Vander Meer, G.E. Vander, Octopamine modulates honey bee dance behavior. Proc. Natl. Acad. Sci. USA 104, 1703–1707 (2007)

    Article  Google Scholar 

  21. J.R. Riley, U. Greggers, A.D. Smith, D.R. Reynolds, R. Menzel, The flight paths of honeybees recruited by the waggle dance. Nature 435, 205–207 (2005)

    Article  Google Scholar 

  22. S. Miyagawa, R.C. Berwick, K. Okanoya, The emergence of hierarchical structure in human language. Front Psychol 4, 71 (2013)

    Article  Google Scholar 

  23. A. Veeraraghavan, R. Chellappa, M. Srinivasan, Shape-and-behavior encoded tracking of bee dances. IEEE Trans. Pattern Anal. Mach. Intell. 30, 463–476 (2008)

    Article  Google Scholar 

  24. T. Landgraf, R. Rojas, H. Nguyen, F. Kriegel, K. Stettin, Analysis of the waggle dance motion of honeybees for the design of a biomimetic honeybee robot. PLoS ONE 6, e21354 (2011)

    Article  Google Scholar 

  25. J. Krause, A.F.T. Winfield, J.-L. Deneubourg, Interactive robots in experimental biology. Trends Ecol. Evol. 26, 369–375 (2011)

    Google Scholar 

  26. R. Okada, H. Ikeno, T. Kimura, M. Ohashi, H. Aonuma, E. Ito, Error in the Honeybee Waggle dance improves foraging flexibility. Sci. Rep. 4 (2014)

    Google Scholar 

  27. B.E. Blasing, Segmentation of dance movement: effects of expertise, visual familiarity, motor experience and music. Front Psychol. 5, 1500 (2014)

    Article  Google Scholar 

  28. A. Goncearenco, I.N. Berezovsky, Prototypes of elementary functional loops unravel evolutionary connections between protein functions. Bioinformatics 26, i497–i503 (2010)

    Article  Google Scholar 

  29. T. Erclik, V. Hartenstein, R.R. McInnes, H.D. Lipshitz, Eye evolution at high resolution: the neuron as a unit of homology. Dev. Biol. 332, 70–79 (2009)

    Article  Google Scholar 

  30. D. Crews, The (bi)sexual brain. Science & society series on sex and science. EMBO Rep. 13, 779–784 (2012)

    Article  Google Scholar 

  31. D. Edwards, B. Chung, J. Bacque-Cazenave, D. Cattaert, Neuromechanical model of reflexes and locomotor rhythms in the crayfish leg. BMC Neurosci. 14, 1–3 (2013)

    Google Scholar 

  32. S. Lavoué, M. Miya, M.E. Arnegard, P.B. McIntyre, V. Mamonekene, M. Nishida, Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergence, in Proceedings of the Royal Society of London B: Biological Sciences (2010)

    Google Scholar 

  33. E.D. Jarvis, Learned birdsong and the neurobiology of human language. Ann. N. Y. Acad. Sci. 1016, 749–777 (2004)

    Article  Google Scholar 

  34. N.J. Emery, Cognitive ornithology: the evolution of avian intelligence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 23–43 (2006)

    Article  Google Scholar 

  35. N.J. Emery, N.S. Clayton, The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306, 1903–1907 (2004)

    Article  Google Scholar 

  36. N. Clayton, Q&A: bird behaviour, Darwin and dance. Interview by Patrick Goymer. Nature 462, 288 (2009)

    Article  Google Scholar 

  37. M.J. Fuxjager, K.M. Longpre, J.G. Chew, L. Fusani, B.A. Schlinger, Peripheral androgen receptors sustain the acrobatics and fine motor skill of elaborate male courtship. Endocrinology 154, 3168–3177 (2013)

    Article  Google Scholar 

  38. A. Hasegawa, K. Okanoya, T. Hasegawa, Y. Seki, Rhythmic synchronization tapping to an audio-visual metronome in budgerigars. Sci. Rep. 1, 120 (2011)

    Article  Google Scholar 

  39. R.A. Mulder, M.L. Hall, Animal behaviour: a song and dance about lyrebirds. Curr. Biol. 23, R518–R519 (2013)

    Article  Google Scholar 

  40. A.D. Patel, J.R. Iversen, M.R. Bregman, I. Schulz, Experimental evidence for synchronization to a musical beat in a nonhuman animal. Curr. Biol. 19, 827–830 (2009)

    Article  Google Scholar 

  41. A. Ravignani, D.L. Bowling, W.T. Fitch, Chorusing, synchrony, and the evolutionary functions of rhythm. Front Psychol. 5, 1118 (2014)

    Article  Google Scholar 

  42. A. Schachner, T.F. Brady, I.M. Pepperberg, M.D. Hauser, Spontaneous motor entrainment to music in multiple vocal mimicking species. Curr. Biol. 19, 831–836 (2009)

    Article  Google Scholar 

  43. M. Soma, C. Mori, The songbird as a percussionist: syntactic rules for non-vocal sound and song production in java sparrows. PLoS One 10, e0124876 (2015)

    Article  Google Scholar 

  44. H. Williams, Choreography of song, dance and beak movements in the zebra finch (Taeniopygia guttata). J. Exp. Biol. 204, 3497–3506 (2001)

    Google Scholar 

  45. BBC, Planet earth: bird of paradise. Available: http://www.bbc.co.uk/programmes/p0036vcg (2009)

  46. T. Shimizu, T.B. Patton, S.A. Husband, Avian visual behavior and the organization of the telencephalon. Brain Behav. Evol. 75, 204–217 (2010)

    Article  Google Scholar 

  47. M.I. Koukourakis, Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br. J. Radiol. 85, 313–330 (2012)

    Article  Google Scholar 

  48. J.W. Drake, Chaos and order in spontaneous mutation. Genetics 173, 1–8 (2006)

    Google Scholar 

  49. M.W. Nachman, S.L. Crowell, Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000)

    Google Scholar 

  50. S. Kumar, S. Subramanian, Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. 99, 803–808 (2002)

    Article  Google Scholar 

  51. A. Poduri, G.D. Evrony, X. Cai, C.A. Walsh, Somatic mutation, genomic variation, and neurological disease. Science 341, 1237758 (2013)

    Article  Google Scholar 

  52. K.J. Peall, D.J. Smith, M.A. Kurian, M. Wardle, A.J. Waite, T. Hedderly et al., SGCE mutations cause psychiatric disorders: clinical and genetic characterization. Brain 136, 294–303 (2013)

    Article  Google Scholar 

  53. A.C. Antoniou, S. Casadei, T. Heikkinen, D. Barrowdale, K. Pylkas, J. Roberts et al., Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 371, 497–506 (2014)

    Article  Google Scholar 

  54. B. Kraszewska-Domanska, B. Pawluczuk, The gene of golden plumage colour linked with lower fertility in Mangurian Golden quail. Theor. Appl. Genet. 51, 19–20 (1977)

    Article  Google Scholar 

  55. F. Minvielle, S. Ito, M. Inoue-Murayama, M. Mizutani, N. Wakasugi, Genetic analyses of plumage color mutations on the Z chromosome of Japanese quail. J Hered 91, 499–501 (2000)

    Google Scholar 

  56. S. Li, C. Wang, W. Yu, S. Zhao, Y. Gong, Identification of genes related to white and black plumage formation by RNA-Seq from white and black feather bulbs in ducks. PLoS One 7, e36592 (2012)

    Article  Google Scholar 

  57. S. Sato, T. Otake, C. Suzuki, J. Saburi, E. Kobayashi, Mapping of the recessive white locus and analysis of the tyrosinase gene in chickens. Poult. Sci. 86, 2126–2133 (2007)

    Article  Google Scholar 

  58. J. Barske, L. Fusani, M. Wikelski, N.Y. Feng, M. Santos, B.A. Schlinger, Energetics of the acrobatic courtship in male golden-collared manakins (Manacus vitellinus). Proc. Biol. Sci. 281, 20132482 (2014)

    Article  Google Scholar 

  59. J.J. Templeton, D.J. Mountjoy, S.R. Pryke, S.C. Griffith, In the eye of the beholder: visual mate choice lateralization in a polymorphic songbird. Biol. Lett. 8, 924–927 (2012)

    Article  Google Scholar 

  60. B.A. Schlinger, J. Barske, L. Day, L. Fusani, M.J. Fuxjager, Hormones and the neuromuscular control of courtship in the golden-collared manakin (Manacus vitellinus). Front Neuroendocrinol. 34, 143–156 (2013)

    Article  Google Scholar 

  61. M.L. Wilson, C. Boesch, B. Fruth, T. Furuichi, I.C. Gilby, C. Hashimoto et al., Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417 (2014)

    Article  Google Scholar 

  62. C. Boesch, C. Crockford, I. Herbinger, R. Wittig, Y. Moebius, E. Normand, Intergroup conflicts among chimpanzees in Tai National Park: lethal violence and the female perspective. Am. J. Primatol. 70, 519–532 (2008)

    Article  Google Scholar 

  63. R.W. Wrangham, M.L. Wilson, Collective violence: comparisons between youths and chimpanzees. Ann. N. Y. Acad. Sci. 1036, 233–256 (2004)

    Article  Google Scholar 

  64. R.W. Wrangham, L. Glowacki, Intergroup aggression in chimpanzees and war in nomadic hunter-gatherers: evaluating the chimpanzee model. Hum Nat 23, 5–29 (2012)

    Article  Google Scholar 

  65. M.N. Muller, S.M. Kahlenberg, M. Emery Thompson, R.W. Wrangham, Male coercion and the costs of promiscuous mating for female chimpanzees. Proc. Roy. Soc. Lond. B Biol. Sci. 274, 1009–1014 (2007)

    Article  Google Scholar 

  66. G.R. Pradhan, S.A. Pandit, C.P. Van schaik, Why do chimpanzee males attack the females of neighboring communities? Am. J. Phys. Anthropol. 155, 430–435 (2014)

    Article  Google Scholar 

  67. J. Goodall, Infant killing and cannibalism in free-living chimpanzees. Folia Primatol. 28, 259–289 (1977)

    Article  Google Scholar 

  68. H.M. Zawati, Impunity or immunity: wartime male rape and sexual torture as a crime against humanity. Torture 17, 27–47 (2007)

    Google Scholar 

  69. G.G. Dimijian, Warfare, genocide, and ethnic conflict: a Darwinian approach. Proc. Bayl. Univ. Med. Cent. 23, 292–300 (2010)

    Google Scholar 

  70. A. Papachristoforou, A. Rortais, J. Sueur, G. Arnold, Attack or retreat: contrasted defensive tactics used by Cyprian honeybee colonies under attack from hornets. Behav. Process. 86, 236–241 (2011)

    Article  Google Scholar 

  71. Y. Hattori, M. Tomonaga, T. Matsuzawa, Spontaneous synchronized tapping to an auditory rhythm in a chimpanzee. Sci Rep 3, 1566 (2013)

    Article  Google Scholar 

  72. F. Ramseyer, W. Tschacher, Nonverbal synchrony of head- and body-movement in psychotherapy: different signals have different associations with outcome. Front Psychol. 5, 979 (2014)

    Article  Google Scholar 

  73. N. Hugill, B. Fink, N. Neave, The role of human body movements in mate selection. Evol. Psychol. 8, 66–89 (2010)

    Article  Google Scholar 

  74. W.M. Brown, L. Cronk, K. Grochow, A. Jacobson, C.K. Liu, Z. Lalosević et al., Dance reveals symmetry especially in young men. Nature 438, 1148–1150 (2005)

    Article  Google Scholar 

  75. D. Garrigan, S.B. Kingan, M.M. Pilkington, J.A. Wilder, M.P. Cox, H. Soodyall et al., Inferring human population sizes, divergence times and rates of gene flow from mitochondrial, X and Y chromosome resequencing data. Genetics 177, 2195–2207 (2007)

    Article  Google Scholar 

  76. H. Li, R. Durbin, Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011)

    Article  Google Scholar 

  77. S.H. Ambrose, Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J. Hum. Evol. 34, 623–651 (1998)

    Article  Google Scholar 

  78. A. Manica, W. Amos, F. Balloux, T. Hanihara, The effect of ancient population bottlenecks on human phenotypic variation. Nature 448, 346–348 (2007)

    Article  Google Scholar 

  79. S.L. Carto, A.J. Weaver, R. Hetherington, Y. Lam, E.C. Wiebe, Out of Africa and into an ice age: on the role of global climate change in the late Pleistocene migration of early modern humans out of Africa. J. Hum. Evol. 56, 139–151 (2009)

    Article  Google Scholar 

  80. J.J. Hublin, The earliest modern human colonization of Europe. Proc. Natl. Acad. Sci. USA 109, 13471–13472 (2012)

    Article  Google Scholar 

  81. F. d’Errico, M.A.F. Sánchez Goñi, Neandertal extinction and the millennial scale climatic variability of OIS 3. Q. Sci. Rev. 22, 769–788 (2003)

    Google Scholar 

  82. W.E. Banks, F. d’Errico, A.T. Peterson, M. Kageyama, A. Sima, M.F. Sanchez-Goni, Neanderthal extinction by competitive exclusion. PLoS One 3, e3972 (2008)

    Article  Google Scholar 

  83. T. Wynn, F.L. Coolidge, How to Think Like a Neandertal (Oxford University Press, 2011)

    Google Scholar 

  84. T.M. Preuss, Human brain evolution: from gene discovery to phenotype discovery. Proc. Natl. Acad. Sci. USA 109(Suppl 1), 10709–10716 (2012)

    Article  Google Scholar 

  85. W. Enard, M. Przeworski, S.E. Fisher, C.S. Lai, V. Wiebe, T. Kitano et al., Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002)

    Article  Google Scholar 

  86. W. Enard, S. Gehre, K. Hammerschmidt, S.M. Holter, T. Blass, M. Somel et al., A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137, 961–971 (2009)

    Article  Google Scholar 

  87. T. Maricic, V. Gunther, O. Georgiev, S. Gehre, M. Curlin, C. Schreiweis et al., A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Mol. Biol. Evol. 30, 844–852 (2013)

    Article  Google Scholar 

  88. S. Mithen, The Prehistory of the Mind: The Cognitive Origins of Art, Religion and Science (Thames & Hudson, 1999)

    Google Scholar 

  89. B. Kurten, Dance of the Tiger: A Novel of the Ice Age (University of California Press, 1995)

    Google Scholar 

  90. V. Escott-Price, C. International Parkinson’s Disease Genomics, M.A. Nalls, H.R. Morris, S. Lubbe, A. Brice, et al., Polygenic risk of Parkinson disease is correlated with disease age at onset. Ann. Neurol. 77, 582–91 (2015)

    Google Scholar 

  91. J.F. Crow, On epistasis: why it is unimportant in polygenic directional selection. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1241–1244 (2010)

    Article  Google Scholar 

  92. M.S. Okun, Huntington’s disease: what we learned from the original essay. Neurologist 9, 175–179 (2003)

    Article  Google Scholar 

  93. T. Steimer, The biology of fear- and anxiety-related behaviors. Dialogues Clin. Neurosci. 4, 231–249 (2002)

    Google Scholar 

  94. M.C. Pfaltz, P. Grossman, T. Michael, J. Margraf, F.H. Wilhelm, Physical activity and respiratory behavior in daily life of patients with panic disorder and healthy controls. Int. J. Psychophysiol. 78, 42–49 (2010)

    Article  Google Scholar 

  95. M.J. Green, M.L. Phillips, Social threat perception and the evolution of paranoia. Neurosci. Biobehav. Rev. 28, 333–342 (2004)

    Article  Google Scholar 

  96. J.N. Crawley, What’s wrong with my mouse (Wiley, New York, USA, 2000)

    Google Scholar 

  97. A. Ghosh, J. Rothwell, P. Haggard, Using voluntary motor commands to inhibit involuntary arm movements. Proc. Biol. Sci. 281, 20141139 (2014)

    Article  Google Scholar 

  98. A. Ghosh, P. Haggard, The spinal reflex cannot be perceptually separated from voluntary movements. J. Physiol. 592, 141–152 (2014)

    Article  Google Scholar 

  99. A. Walker, The strength of great apes and the speed of humans. Curr. Anthropol. 50, 229–234 (2009)

    Article  Google Scholar 

  100. G.H. Jacobs, Evolution of colour vision in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2957–2967 (2009)

    Article  Google Scholar 

  101. G. Jordan, J.D. Mollon, A study of women heterozygous for colour deficiencies. Vision. Res. 33, 1495–1508 (1993)

    Article  Google Scholar 

  102. T. Okayasu, T. Nishimura, A. Yamashita, O. Saito, F. Fukuda, S. Yanai et al., Human ultrasonic hearing is induced by a direct ultrasonic stimulation of the cochlea. Neurosci. Lett. 539, 71–76 (2013)

    Article  Google Scholar 

  103. R. Bachner-Melman, C. Dina, A.H. Zohar, N. Constantini, E. Lerer, S. Hoch et al., AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genet. 1, e42 (2005)

    Article  Google Scholar 

  104. T.R. Morrison, R.H. Melloni Jr, The role of serotonin, vasopressin, and serotonin/vasopressin interactions in aggressive behavior. Curr Top Behav Neurosci 17, 189–228 (2014)

    Article  Google Scholar 

  105. J. Borg, B. Andree, H. Soderstrom, L. Farde, The serotonin system and spiritual experiences. Am. J. Psychiatry 160, 1965–1969 (2003)

    Article  Google Scholar 

  106. C.F. Harding, S.A. Rowe, Vasotocin treatment inhibits courtship in male zebra finches; concomitant androgen treatment inhibits this effect. Horm. Behav. 44, 413–418 (2003)

    Article  Google Scholar 

  107. J.L. Goodson, Territorial aggression and dawn song are modulated by septal vasotocin and vasoactive intestinal polypeptide in male field sparrows (Spizella pusilla). Horm. Behav. 34, 67–77 (1998)

    Article  Google Scholar 

  108. E.A. Hammock, L.J. Young, Functional microsatellite polymorphism associated with divergent social structure in vole species. Mol. Biol. Evol. 21, 1057–1063 (2004)

    Article  Google Scholar 

  109. M. Galfi, M. Radacs, A. Juhasz, F. Laszlo, A. Molnar, F.A. Laszlo, Serotonin-induced enhancement of vasopressin and oxytocin secretion in rat neurohypophyseal tissue culture. Regul. Pept. 127, 225–231 (2005)

    Article  Google Scholar 

  110. C.C. Sherwood, F. Subiaul, T.W. Zawidzki, A natural history of the human mind: tracing evolutionary changes in brain and cognition. J. Anat. 212, 426–454 (2008)

    Article  Google Scholar 

  111. E. Genty, T. Breuer, C. Hobaiter, R.W. Byrne, Gestural communication of the gorilla (Gorilla gorilla): repertoire, intentionality and possible origins. Anim. Cogn. 12, 527–546 (2009)

    Article  Google Scholar 

  112. F. Lacquaniti, Y.P. Ivanenko, A. d’Avella, K.E. Zelik, M. Zago, Evolutionary and developmental modules. Front Comput. Neurosci. 7, 61 (2013)

    Article  Google Scholar 

  113. R.G. Northcutt, Evolution of centralized nervous systems: two schools of evolutionary thought. Proc. Natl. Acad. Sci. USA 109(Suppl 1), 10626–10633 (2012)

    Article  Google Scholar 

  114. F. Hirth, Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol. Disord. Drug. Targets 9, 504–523 (2010)

    Article  Google Scholar 

  115. W.J. Ewens, F. James, Crow and the stochastic theory of population genetics. Genetics 190, 287–290 (2012)

    Google Scholar 

  116. E.R. Mardis, Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 9, 387–402 (2008)

    Article  Google Scholar 

  117. S. Oota, K. Mekada, Y. Fujita, J. Humphries, K. Fukami-Kobayashi, Y. Obata, et al., Four-dimensional quantitative analysis of the gait of mutant mice using coarse-grained motion capture. Presented at the Engineering in Medicine and Biology Society EMBC 2009. Annual International Conference of the IEEE (2009)

    Google Scholar 

  118. T. Akay, W.G. Tourtellotte, S. Arber, T.M. Jessell, Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc. Natl. Acad. Sci. 111, 16877–16882 (2014)

    Article  Google Scholar 

  119. L.M. Havill, H.B. Coan, M.C. Mahaney, D.P. Nicolella, Characterization of complex, co-adapted skeletal biomechanics phenotypes: a needed paradigm shift in the genetics of bone structure and function. Curr. Osteoporos. Rep. 12, 174–180 (2014)

    Article  Google Scholar 

  120. C. Darabos, M.J. White, B.E. Graham, D.N. Leung, S.M. Williams, J.H. Moore, The multiscale backbone of the human phenotype network based on biological pathways. BioData Min. 7, 1 (2014)

    Article  Google Scholar 

  121. D. Papo, J.M. Buldu, S. Boccaletti, and E.T. Bullmore, Complex network theory and the brain. Philos. Trans. R Soc. Lond. B Biol. Sci. 369 (2014)

    Google Scholar 

Download references

Acknowledgements

I would like to express my great appreciation to Professor Yoshihiko Nakamura of University of Tokyo. He introduced me the fascinating world of robotics, which was totally unknown to me. Professor Naruya Saitou of National Institute of Genetics, who is my PhD mentor, gave me insightful suggestions. This work is supported by Grants-in-Aid for Scientific Research—KAKENHI (26280110, 30391890, 30391890, and 17650122) from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Oota .

Editor information

Editors and Affiliations

Glossary

Allele frequency

Individuals in a population can have a variation of genes in each genomic location (locus). Each of the variation is called allele. An allele frequency is literally a proportion of the allele in the locus, among all the allele copies being considered.

Anatomically modern human

It is equivalent to an individual member of the modern human in terms of paleoanthropology. Considering a possibility of the introgression between the modern human and Homo subspecies, this term is intentionally used: i.e., anatomically modern human may not be genetically modern human in terms of phylogeny.

Basal ganglia

A region of brain involved in voluntary motor functions, procedural learning, eye movements, cognition, and emotion, which are all important for dance.

Central pattern generator (CPG)

A (biological) neural network that generates rhythmic neural patterns as outputs without sensory feedback.

Coding region

A genomic region that directly encodes amino acid sequences.

Darwinian selection

In our context, Darwinian selection is virtually equivalent to the positive Darwinian selection (or directional selection): i.e., this is a mode of natural selection that favors an extreme phenotype, leading to a rapid shifting of the allele frequencies towards increment. This implies that the selected alleles have certain benefits to the individuals over the others. In the molecular evolution, the Darwinian positive selection is thought to be quite rare.

Effective population size

The number of individuals in a population that contribute to the number of offspring in the next generation, which is usually smaller than the observed population size.

Epistasis

A genetic concept that an effect of one gene depends on the presence of one or more modifier genes, especially in a non-additive way. The modifier genes are often called “genetic background.”

Exogenous

An adjective form of exogeny, which is phenomenon or an object originating externally: in biology, this often refers to DNA introduced to cells by transfection or vial infection.

Endogenous

An adjective form of endogeny, which is an antonym of exogeny.

Fitness

An individual’s ability to propagate its genes in a population.

Genotype

Discrete representation of a genetic trait of an individual, which is one of inherited determinants of a phenotype. The other determinants are typically epigenetic factors and non-inherited environmental factors.

Haplotype

A collection of specific alleles in a cluster of tightly-linked genes on a chromosome. A set of single nucleotide polymorphisms (SNPs) is also called haplotype.

Intron

Intermittent nucleotide sequences patched between exons in a coding sequence, which are removed by RNA splicing and do not contribute to encode proteins.

Microsatellite

A tandem repeat of di-, tri-, or tetra-nucleotide units in genomic regions. The number of the repeats can easily vary during short-term evolution, leading to large polymorphism. So we can use the repeat number of a micorsatellite to identify a kinship.

Next generation sequencer

Any high throughput sequencers capable of producing a huge amount of sequence data, by which we can exhaustively decode genetic information far quicker than by traditional methods.

Non-coding region

An antonym of the coding region: i.e., DNAs that do not encode protein sequences. Some noncoding DNAs are transcribed to functional non-coding RNA sequences.

Phenotype

Any characteristic traits (morphology, development, physiology, and behavior) of biological systems, which are determined by corresponding genotypes.

Polymorphic data

Data representing polymorphism, which is a genetic or phenotypic variation in a population that shares a gene pool.

Phylogenetic tree

A graphical representation of evolutionary processes by using a tree structure. Relationships of every extant and extinct organism can be represented with a single phylogenetic tree.

Population genetics

Genetics that studies a process of allele frequency changes in a population rather than a individual-level phenomenon: i.e., natural selection, genetic drift, mutation, and gene flow.

Regulatory element

A genetic component that regulates an expression of a gene or genes.

Retroviral sequence

Endogeneous viral elements in the genome, which are highly homologous to known retroviruses. Surprisingly, they occupy 8 % of the human genome.

Selective sweep

Reduction of variation in nucleotide sequences around a mutation that is subject to recent and strong positive selection.

Verbal dyspraxia

A speech disorder, in which a person has difficulty in saying what she/he tries to express. Dyspraxia is motor function disability caused by an abnormality in the nervous system.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oota, S. (2016). The Origin of Dance: Evolutionary Significance on Ritualized Movements of Animals. In: Laumond, JP., Abe, N. (eds) Dance Notations and Robot Motion. Springer Tracts in Advanced Robotics, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-25739-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25739-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25737-2

  • Online ISBN: 978-3-319-25739-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics