Abstract
In this paper, we study the problem of using contextual data points of a data point for its classification problem. We propose to represent a data point as the sparse linear reconstruction of its context, and learn the sparse context to gather with a linear classifier in a supervised way to increase its discriminative ability. We proposed a novel formulation for context learning, by modeling the learning of context reconstruction coefficients and classifier in a unified objective. In this objective, the reconstruction error is minimized and the coefficient sparsity is encouraged. Moreover, the hinge loss of the classifier is minimized and the complexity of the classifier is reduced. This objective is optimized by an alternative strategy in an iterative algorithm. Experiments on three benchmark data set show its advantage over state-of-the-art context-based data representation and classification methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deng, Q., Cai, A.: Svm-based loss differentiation mechanism in mobile ad hoc networks. In: 2009 Global Mobile Congress, GMC 2009 (2009), doi:10.1109/GMC.2009.5295834
Gao, S., Tsang, I.H., Chia, L.T.: Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 92–104 (2013)
Gao, S., Tsang, I.W., Chia, L.T., Zhao, P.: Local features are not lonely–laplacian sparse coding for image classification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3555–3561. IEEE (2010)
Gao, Y., Zhang, F., Bakos, J.D.: Sparse matrix-vector multiply on the keystone ii digital signal processor. In: 2014 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6 (2014)
Guo, Z., Li, Q., You, J., Zhang, D., Liu, W.: Local directional derivative pattern for rotation invariant texture classification. Neural Computing and Applications 21(8), 1893–1904 (2012)
He, Y., Sang, N.: Multi-ring local binary patterns for rotation invariant texture classification. Neural Computing and Applications 22(3-4), 793–802 (2013)
Hu, J., Zhang, F.: Improving protein localization prediction using amino acid group based physichemical encoding. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS, vol. 5462, pp. 248–258. Springer, Heidelberg (2009)
Huang, F., Li, C., Lin, L.: Identifying gender of microblog users based on message mining. In: Li, F., Li, G., Hwang, S.-w., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 488–493. Springer, Heidelberg (2014)
Li, T., Zhou, X., Brandstatter, K., Raicu, I.: Distributed key-value store on hpc and cloud systems. In: 2nd Greater Chicago Area System Research Workshop (GCASR). Citeseer (2013)
Li, T., Zhou, X., Brandstatter, K., Zhao, D., Wang, K., Rajendran, A., Zhang, Z., Raicu, I.: Zht: A light-weight reliable persistent dynamic scalable zero-hop distributed hash table. In: 2013 IEEE 27th International Symposium on Parallel & Distributed Processing (IPDPS), pp. 775–787 (2013)
Melacci, S., Belkin, M.: Laplacian support vector machines trained in the primal. The Journal of Machine Learning Research 12, 1149–1184 (2011)
Peng, B., Liu, Y., Zhou, Y., Yang, L., Zhang, G., Liu, Y.: Modeling nanoparticle targeting to a vascular surface in shear flow through diffusive particle dynamics. Nanoscale Research Letters 10(1), 235 (2015)
Tian, Y., Zhang, Q., Liu, D.: v-nonparallel support vector machine for pattern classification. Neural Computing and Applications 25(5), 1007–1020 (2014)
Wang, J., Li, Y., Wang, Q., You, X., Man, J., Wang, C., Gao, X.: Proclusensem: predicting membrane protein types by fusing different modes of pseudo amino acid composition. Computers in Biology and Medicine 42(5), 564–574 (2012)
Wang, J.J.Y., Bensmail, H., Gao, X.: Multiple graph regularized protein domain ranking. BMC Bioinformatics 13(1), 307 (2012)
Wang, J.J.Y., Bensmail, H., Gao, X.: Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification. Pattern Recognition 46(12), 3249–3255 (2013)
Wang, J.Y., Almasri, I., Gao, X.: Adaptive graph regularized nonnegative matrix factorization via feature selection. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 963–966 (2012)
Wang, K., Kulkarni, A., Zhou, X., Lang, M., Raicu, I.: Using simulation to explore distributed key-value stores for exascale system services. In: 2nd Greater Chicago Area System Research Workshop, GCASR (2013)
Wang, K., Liu, N., Sadooghi, I., Yang, X., Zhou, X., Lang, M., Sun, X.H., Raicu, I.: Overcoming hadoop scaling limitations through distributed task execution. In: Proc. of the IEEE International Conference on Cluster Computing, Cluster 2015 (2015)
Wang, K., Zhou, X., Chen, H., Lang, M., Raicu, I.: Next generation job management systems for extreme-scale ensemble computing. In: Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing, pp. 111–114 (2014)
Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., Raicu, I.: Optimizing load balancing and data-locality with data-aware scheduling. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 119–128 (2014)
Wang, K., Zhou, X., Qiao, K., Lang, M., McClelland, B., Raicu, I.: Towards scalable distributed workload manager with monitoring-based weakly consistent resource stealing. In: Proceedings of the 24rd International Symposium on High-Performance Parallel and Distributed Computing, pp. 219–222. ACM (2015)
Wang, S., Zhou, Y., Tan, J., Xu, J., Yang, J., Liu, Y.: Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field. Computational Mechanics 53(3), 403–412 (2014)
Wang, Y., Han, H.C., Yang, J.Y., Lindsey, M.L., Jin, Y.: A conceptual cellular interaction model of left ventricular remodelling post-mi: dynamic network with exit-entry competition strategy. BMC Systems Biology 4(suppl. 1), S5 (2010)
Wang, Y., Yang, T., Ma, Y., Halade, G.V., Zhang, J., Lindsey, M.L., Jin, Y.F.: Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction. BMC Genomics 13(suppl. 6), S21 (2012)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)
Xu, L., Zhan, Z., Xu, S., Ye, K.: Cross-layer detection of malicious websites. In: Proceedings of the Third ACM Conference on Data and Application Security and Privacy, pp. 141–152. ACM (2013)
Xu, L., Zhan, Z., Xu, S., Ye, K.: An evasion and counter-evasion study in malicious websites detection. In: 2014 IEEE Conference on Communications and Network Security (CNS), pp. 265–273. IEEE (2014)
Xu, S., Lu, W., Xu, L., Zhan, Z.: Adaptive epidemic dynamics in networks: Thresholds and control. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 8(4), 19 (2014)
Xu, S., Lu, W., Zhan, Z.: A stochastic model of multivirus dynamics. IEEE Transactions on Dependable and Secure Computing 9(1), 30–45 (2012)
Xu, S., Qian, H., Wang, F., Zhan, Z., Bertino, E., Sandhu, R.: Trustworthy information: concepts and mechanisms. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 398–404. Springer, Heidelberg (2010)
Xu, Y., Shen, F., Zhao, J.: An incremental learning vector quantization algorithm for pattern classification. Neural Computing and Applications 21(6), 1205–1215 (2012)
Zhan, Z., Xu, M., Xu, S.: Characterizing honeypot-captured cyber attacks: Statistical framework and case study. IEEE Transactions on Information Forensics and Security 8(11), 1775–1789 (2013)
Zhan, Z., Xu, M., Xu, S.: A characterization of cybersecurity posture from network telescope data. In: Proceedings of the 6th International Conference on Trustworthy Systems, Intrust, vol. 14 (2014)
Zhang, F., Gao, Y., Bakos, J.D.: Lucas-kanade optical flow estimation on the ti c66x digital signal processor. In: 2014 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6 (2014)
Zhang, F., Hu, J.: Bayesian classifier for anchored protein sorting discovery. In: IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2009, pp. 424–428 (2009)
Zhang, F., Hu, J.: Bioinformatics analysis of physicochemical properties of protein sorting signals (2010)
Zhang, F., Zhang, Y., Bakos, J.: Gpapriori: Gpu-accelerated frequent itemset mining. In: 2011 IEEE International Conference on Cluster Computing (CLUSTER), pp. 590–594 (2011)
Zhang, F., Zhang, Y., Bakos, J.D.: Accelerating frequent itemset mining on graphics processing units. The Journal of Supercomputing 66(1), 94–117 (2013)
Zhang, Y., Zhang, F., Bakos, J.: Frequent itemset mining on large-scale shared memory machines. In: 2011 IEEE International Conference on Cluster Computing (CLUSTER), pp. 585–589 (2011)
Zhang, Y., Zhang, F., Jin, Z., Bakos, J.D.: An fpga-based accelerator for frequent itemset mining. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 6(1), 2 (2013)
Zhao, D., Zhang, Z., Zhou, X., Li, T., Wang, K., Kimpe, D., Carns, P., Ross, R., Raicu, I.: Fusionfs: Toward supporting data-intensive scientific applications on extreme-scale high-performance computing systems. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 61–70 (2014)
Zhou, X., Chen, H., Wang, K., Lang, M., Raicu, I.: Exploring distributed resource allocation techniques in the slurm job management system. Illinois Institute of Technology, Department of Computer Science, Technical Report (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, J., Zhou, Y., Yin, M., Chen, S., Edwards, B. (2015). Representing Data by Sparse Combination of Contextual Data Points for Classification. In: Hu, X., Xia, Y., Zhang, Y., Zhao, D. (eds) Advances in Neural Networks – ISNN 2015. ISNN 2015. Lecture Notes in Computer Science(), vol 9377. Springer, Cham. https://doi.org/10.1007/978-3-319-25393-0_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-25393-0_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25392-3
Online ISBN: 978-3-319-25393-0
eBook Packages: Computer ScienceComputer Science (R0)