Nothing Special   »   [go: up one dir, main page]

Skip to main content

Representing Data by Sparse Combination of Contextual Data Points for Classification

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2015 (ISNN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9377))

Included in the following conference series:

Abstract

In this paper, we study the problem of using contextual data points of a data point for its classification problem. We propose to represent a data point as the sparse linear reconstruction of its context, and learn the sparse context to gather with a linear classifier in a supervised way to increase its discriminative ability. We proposed a novel formulation for context learning, by modeling the learning of context reconstruction coefficients and classifier in a unified objective. In this objective, the reconstruction error is minimized and the coefficient sparsity is encouraged. Moreover, the hinge loss of the classifier is minimized and the complexity of the classifier is reduced. This objective is optimized by an alternative strategy in an iterative algorithm. Experiments on three benchmark data set show its advantage over state-of-the-art context-based data representation and classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deng, Q., Cai, A.: Svm-based loss differentiation mechanism in mobile ad hoc networks. In: 2009 Global Mobile Congress, GMC 2009 (2009), doi:10.1109/GMC.2009.5295834

    Google Scholar 

  2. Gao, S., Tsang, I.H., Chia, L.T.: Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 92–104 (2013)

    Article  Google Scholar 

  3. Gao, S., Tsang, I.W., Chia, L.T., Zhao, P.: Local features are not lonely–laplacian sparse coding for image classification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3555–3561. IEEE (2010)

    Google Scholar 

  4. Gao, Y., Zhang, F., Bakos, J.D.: Sparse matrix-vector multiply on the keystone ii digital signal processor. In: 2014 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6 (2014)

    Google Scholar 

  5. Guo, Z., Li, Q., You, J., Zhang, D., Liu, W.: Local directional derivative pattern for rotation invariant texture classification. Neural Computing and Applications 21(8), 1893–1904 (2012)

    Article  Google Scholar 

  6. He, Y., Sang, N.: Multi-ring local binary patterns for rotation invariant texture classification. Neural Computing and Applications 22(3-4), 793–802 (2013)

    Article  Google Scholar 

  7. Hu, J., Zhang, F.: Improving protein localization prediction using amino acid group based physichemical encoding. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS, vol. 5462, pp. 248–258. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Huang, F., Li, C., Lin, L.: Identifying gender of microblog users based on message mining. In: Li, F., Li, G., Hwang, S.-w., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 488–493. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  9. Li, T., Zhou, X., Brandstatter, K., Raicu, I.: Distributed key-value store on hpc and cloud systems. In: 2nd Greater Chicago Area System Research Workshop (GCASR). Citeseer (2013)

    Google Scholar 

  10. Li, T., Zhou, X., Brandstatter, K., Zhao, D., Wang, K., Rajendran, A., Zhang, Z., Raicu, I.: Zht: A light-weight reliable persistent dynamic scalable zero-hop distributed hash table. In: 2013 IEEE 27th International Symposium on Parallel & Distributed Processing (IPDPS), pp. 775–787 (2013)

    Google Scholar 

  11. Melacci, S., Belkin, M.: Laplacian support vector machines trained in the primal. The Journal of Machine Learning Research 12, 1149–1184 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Peng, B., Liu, Y., Zhou, Y., Yang, L., Zhang, G., Liu, Y.: Modeling nanoparticle targeting to a vascular surface in shear flow through diffusive particle dynamics. Nanoscale Research Letters 10(1), 235 (2015)

    Article  Google Scholar 

  13. Tian, Y., Zhang, Q., Liu, D.: v-nonparallel support vector machine for pattern classification. Neural Computing and Applications 25(5), 1007–1020 (2014)

    Article  Google Scholar 

  14. Wang, J., Li, Y., Wang, Q., You, X., Man, J., Wang, C., Gao, X.: Proclusensem: predicting membrane protein types by fusing different modes of pseudo amino acid composition. Computers in Biology and Medicine 42(5), 564–574 (2012)

    Article  Google Scholar 

  15. Wang, J.J.Y., Bensmail, H., Gao, X.: Multiple graph regularized protein domain ranking. BMC Bioinformatics 13(1), 307 (2012)

    Article  Google Scholar 

  16. Wang, J.J.Y., Bensmail, H., Gao, X.: Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification. Pattern Recognition 46(12), 3249–3255 (2013)

    Article  Google Scholar 

  17. Wang, J.Y., Almasri, I., Gao, X.: Adaptive graph regularized nonnegative matrix factorization via feature selection. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 963–966 (2012)

    Google Scholar 

  18. Wang, K., Kulkarni, A., Zhou, X., Lang, M., Raicu, I.: Using simulation to explore distributed key-value stores for exascale system services. In: 2nd Greater Chicago Area System Research Workshop, GCASR (2013)

    Google Scholar 

  19. Wang, K., Liu, N., Sadooghi, I., Yang, X., Zhou, X., Lang, M., Sun, X.H., Raicu, I.: Overcoming hadoop scaling limitations through distributed task execution. In: Proc. of the IEEE International Conference on Cluster Computing, Cluster 2015 (2015)

    Google Scholar 

  20. Wang, K., Zhou, X., Chen, H., Lang, M., Raicu, I.: Next generation job management systems for extreme-scale ensemble computing. In: Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing, pp. 111–114 (2014)

    Google Scholar 

  21. Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., Raicu, I.: Optimizing load balancing and data-locality with data-aware scheduling. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 119–128 (2014)

    Google Scholar 

  22. Wang, K., Zhou, X., Qiao, K., Lang, M., McClelland, B., Raicu, I.: Towards scalable distributed workload manager with monitoring-based weakly consistent resource stealing. In: Proceedings of the 24rd International Symposium on High-Performance Parallel and Distributed Computing, pp. 219–222. ACM (2015)

    Google Scholar 

  23. Wang, S., Zhou, Y., Tan, J., Xu, J., Yang, J., Liu, Y.: Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field. Computational Mechanics 53(3), 403–412 (2014)

    Article  MATH  Google Scholar 

  24. Wang, Y., Han, H.C., Yang, J.Y., Lindsey, M.L., Jin, Y.: A conceptual cellular interaction model of left ventricular remodelling post-mi: dynamic network with exit-entry competition strategy. BMC Systems Biology 4(suppl. 1), S5 (2010)

    Google Scholar 

  25. Wang, Y., Yang, T., Ma, Y., Halade, G.V., Zhang, J., Lindsey, M.L., Jin, Y.F.: Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction. BMC Genomics 13(suppl. 6), S21 (2012)

    Google Scholar 

  26. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)

    Article  Google Scholar 

  27. Xu, L., Zhan, Z., Xu, S., Ye, K.: Cross-layer detection of malicious websites. In: Proceedings of the Third ACM Conference on Data and Application Security and Privacy, pp. 141–152. ACM (2013)

    Google Scholar 

  28. Xu, L., Zhan, Z., Xu, S., Ye, K.: An evasion and counter-evasion study in malicious websites detection. In: 2014 IEEE Conference on Communications and Network Security (CNS), pp. 265–273. IEEE (2014)

    Google Scholar 

  29. Xu, S., Lu, W., Xu, L., Zhan, Z.: Adaptive epidemic dynamics in networks: Thresholds and control. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 8(4), 19 (2014)

    Google Scholar 

  30. Xu, S., Lu, W., Zhan, Z.: A stochastic model of multivirus dynamics. IEEE Transactions on Dependable and Secure Computing 9(1), 30–45 (2012)

    Article  Google Scholar 

  31. Xu, S., Qian, H., Wang, F., Zhan, Z., Bertino, E., Sandhu, R.: Trustworthy information: concepts and mechanisms. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 398–404. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Xu, Y., Shen, F., Zhao, J.: An incremental learning vector quantization algorithm for pattern classification. Neural Computing and Applications 21(6), 1205–1215 (2012)

    Article  Google Scholar 

  33. Zhan, Z., Xu, M., Xu, S.: Characterizing honeypot-captured cyber attacks: Statistical framework and case study. IEEE Transactions on Information Forensics and Security 8(11), 1775–1789 (2013)

    Article  Google Scholar 

  34. Zhan, Z., Xu, M., Xu, S.: A characterization of cybersecurity posture from network telescope data. In: Proceedings of the 6th International Conference on Trustworthy Systems, Intrust, vol. 14 (2014)

    Google Scholar 

  35. Zhang, F., Gao, Y., Bakos, J.D.: Lucas-kanade optical flow estimation on the ti c66x digital signal processor. In: 2014 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6 (2014)

    Google Scholar 

  36. Zhang, F., Hu, J.: Bayesian classifier for anchored protein sorting discovery. In: IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2009, pp. 424–428 (2009)

    Google Scholar 

  37. Zhang, F., Hu, J.: Bioinformatics analysis of physicochemical properties of protein sorting signals (2010)

    Google Scholar 

  38. Zhang, F., Zhang, Y., Bakos, J.: Gpapriori: Gpu-accelerated frequent itemset mining. In: 2011 IEEE International Conference on Cluster Computing (CLUSTER), pp. 590–594 (2011)

    Google Scholar 

  39. Zhang, F., Zhang, Y., Bakos, J.D.: Accelerating frequent itemset mining on graphics processing units. The Journal of Supercomputing 66(1), 94–117 (2013)

    Article  Google Scholar 

  40. Zhang, Y., Zhang, F., Bakos, J.: Frequent itemset mining on large-scale shared memory machines. In: 2011 IEEE International Conference on Cluster Computing (CLUSTER), pp. 585–589 (2011)

    Google Scholar 

  41. Zhang, Y., Zhang, F., Jin, Z., Bakos, J.D.: An fpga-based accelerator for frequent itemset mining. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 6(1), 2 (2013)

    Google Scholar 

  42. Zhao, D., Zhang, Z., Zhou, X., Li, T., Wang, K., Kimpe, D., Carns, P., Ross, R., Raicu, I.: Fusionfs: Toward supporting data-intensive scientific applications on extreme-scale high-performance computing systems. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 61–70 (2014)

    Google Scholar 

  43. Zhou, X., Chen, H., Wang, K., Lang, M., Raicu, I.: Exploring distributed resource allocation techniques in the slurm job management system. Illinois Institute of Technology, Department of Computer Science, Technical Report (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, J., Zhou, Y., Yin, M., Chen, S., Edwards, B. (2015). Representing Data by Sparse Combination of Contextual Data Points for Classification. In: Hu, X., Xia, Y., Zhang, Y., Zhao, D. (eds) Advances in Neural Networks – ISNN 2015. ISNN 2015. Lecture Notes in Computer Science(), vol 9377. Springer, Cham. https://doi.org/10.1007/978-3-319-25393-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25393-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25392-3

  • Online ISBN: 978-3-319-25393-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics