Abstract
In this paper, we investigate the issue of modeling corporate entities’ online reputation. We introduce a bayesian latent probabilistic model approach for e-Reputation analysis based on Dimensions (Reputational Concepts) Categorization and Opinion Mining from textual content. Dimensions to analyze e-Reputation are set up by analyst as latent variables. Machine Learning (ML) Natural Language Processing (NLP) approaches are used to label large sets of text passages. For each Dimension, several estimations of the relationship with each text passage are computed as well as Opinion and Priority. The proposed automatic path modeling algorithm explains Opinion or Priority scores based on selected Dimensions. Model Robustness’ is evaluated over RepLab dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Mather, M., Sutherland, M.R.: Arousal-biased competition in perception and memory. Perspect. Psychol. Sci. 6(2), 114–133 (2011)
Amigó, E., Carrillo de Albornoz, J., Chugur, I., Corujo, A., Gonzalo, J., Martín, T., Meij, E., de Rijke, M., Spina, D.: Overview of RepLab 2013: evaluating online reputation monitoring systems. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 333–352. Springer, Heidelberg (2013)
Amigó, E., Carrillo-de-Albornoz, J., Chugur, I., Corujo, A., Gonzalo, J., Meij, E., de Rijke, M., Spina, D.: Overview of RepLab 2014: author profiling and reputation dimensions for online reputation management. In: Kanoulas, E., Lupu, M., Clough, P., Sanderson, M., Hall, M., Hanbury, A., Toms, E. (eds.) CLEF 2014. LNCS, vol. 8685, pp. 307–322. Springer, Heidelberg (2014)
Villena Román, J., Lana Serrano, S., Martínez Cámara, E., González Cristóbal, J.C.: Tass-workshop on sentiment analysis at sepln (2013)
Zhao, W.X., Jiang, J., He, J., Song, Y., Achananuparp, P., Lim, E.P., Li, X.: Topical keyphrase extraction from twitter. In: Proceedings of the 49th Annual Meeting of the ACL: Human Language Technologies (2011)
Velcin, J., Kim, Y., Brun, C., Dormagen, J., SanJuan, E., Khouas, L., Peradotto, A., Bonnevay, S., Roux, C., Boyadjian, J., et al.: Investigating the image of entities in social media: Dataset design and first results. In: LREC (2014)
Peleja, F., Santos, J., Magalhães, J.: Reputation analysis with a ranked sentiment-lexicon. In: Proceedings of the 37th SIGIR conference (2014)
McDonald, G., Deveaud, R., McCreadie, R., Macdonald, C., Ounis, I.: Tweet enrichment for effective dimensions classification in online reputation management. In: Ninth International AAAI Conference on Web and Social Media (2015)
Qureshi, M.A., O’Riordan, C., Pasi, G.: Exploiting wikipedia for entity name disambiguation in tweets. In: NLP and Information Systems (2014)
Derczynski, L., Maynard, D., Rizzo, G., van Erp, M., Gorrell, G., Troncy, R., Petrak, J., Bontcheva, K.: Analysis of named entity recognition and linking for tweets. Inf. Process. Manag. 51(2), 32–49 (2015)
Damak, F., Pinel-Sauvagnat, K., Boughanem, M., Cabanac, G.: Effectiveness of state-of-the-art features for microblog search. In: The 28th ACM Symposium on Applied Computing (2013)
Cossu, J.V., Janod, K., Ferreira, E., Gaillard, J., El-Bèze, M.: Nlp-based classifiers to generalize experts assessments in e-reputation. In: CLEF (2015)
Acknowledgment
This work is funded by the project ImagiWeb ANR-2012-CORD-002-01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Cossu, JV., SanJuan, E., Torres-Moreno, JM., El-Bèze, M. (2015). Multi-dimensional Reputation Modeling Using Micro-blog Contents. In: Esposito, F., Pivert, O., Hacid, MS., Rás, Z., Ferilli, S. (eds) Foundations of Intelligent Systems. ISMIS 2015. Lecture Notes in Computer Science(), vol 9384. Springer, Cham. https://doi.org/10.1007/978-3-319-25252-0_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-25252-0_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25251-3
Online ISBN: 978-3-319-25252-0
eBook Packages: Computer ScienceComputer Science (R0)