Nothing Special   »   [go: up one dir, main page]

Skip to main content

Granular Rules and Rule Frames for Compact Knowledge Representation

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9384))

Included in the following conference series:

  • 710 Accesses

Abstract

Efficient management of big Rule-Based Systems constitutes an important challenge for Knowledge Engineering. This paper presents an approach based on Granular Sets and Granular Relations. Granules of data replace numerous low-level items and allow for concise definition of constraints over a single attribute. Granular Relations are used for specification of preconditions of rules. A single Granular Rule can replace numerous rules with atomic preconditions. By analogy to Relational Databases, a complete Granular Rule Frame consists of Rule Scheme and Rule Specification. Such approach allows for efficient and concise specification of powerful rules at the conceptual level and makes analysis of rule set easier. The detailed specifications of Granular Rules are much more concise than in the case of atomic attribute values, but still allow for incorporating all necessary details.

A. Ligęza—AGH University of Science and Technology; Research Contract No. 18.18.120.859.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If this is not the case, it is enough to create a separate, single element granule for any remaining residual element.

References

  1. Bargieła, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  2. Conolly, T., Begg, C., Strachan, A.: Database Systems. A Practical Approach to Design, Implementation and Management. Addison-Wesley, Melbourne (1998)

    Google Scholar 

  3. Liebowitz, J. (ed.): The Handbook of Applied Expert Systems. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  4. Ligęza, A.: Granular sets and granular relations. An algebraic approach to knowledge representation and reasoning. In: AIMETH 2002 Methods of Artificial intelligence, pp. 47–54, Gliwice (2002)

    Google Scholar 

  5. Ligęza, A.: Granular sets and granular relations: towards a higher abstraction level in knowledge representation. In: Kłopotek, M.A., Wierzchoń, S.T., Michalewicz, M. (eds.) Intelligent Information Systems 2002. Advances in Soft Computing, vol. 17, pp. 331–340. Physica-Verlag HD, Springer-Verlag Berlin Heidelberg (2002)

    Chapter  Google Scholar 

  6. Ligęza, A.: Logical Foundations for Rule-Based Systems. In the series: Studies in Computational Intelligence, vol. 11. Springer-Verlag, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  7. Ligęza, A., Nalepa, G.J.: Knowledge representation with granular attributive logic for XTT-based expert systems. In: Proceedings of the 20th Florida Artificial Intelligence Research Society Conference FLAIRS, pp. 530–535 (2007)

    Google Scholar 

  8. Ligęza, A., Szpyrka, M.: A note on granular sets and their relation to rough sets. In: RSEISP 2007 International Conference Rough Sets and Emerging Intelligent Systems Paradigms, pp. 251–260 (2007)

    Google Scholar 

  9. Ligęza, A., Nalepa, G.J.: A study of methodological issues in design and development of rule-based systems: proposal of a new approach. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 1, 117–137 (2011)

    Article  Google Scholar 

  10. Moore, R.: Interval Analysis. Prentice-Hall, Upper Saddle River (1966)

    MATH  Google Scholar 

  11. Nalepa, G.J., Ligęza, A.: The HeKatE methodology : hybrid engineering of intelligent systems. Int. J. Appl. Math. Comput. Sci. 20(1), 35–53 (2010)

    Article  MATH  Google Scholar 

  12. Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: HalVA - rule analysis framework for XTT2 rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 337–344. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Negnevitsky, M.: Artificial Intelligence. A Guide to Intelligent Systems. Addison-Wesley, Harlow (2002)

    Google Scholar 

  14. Pawlak, Z.: Rough Sets.Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  15. Pedrycz, W., Skowron, P.W.A., Kreinovich, W.: Handbook of Granular Computing. Wiley, New York (2008)

    Book  Google Scholar 

  16. Ślȩzak, D., Wasilewski, P.: Granular sets – foundations and case study of tolerance spaces. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 435–442. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Yao, Y.Y.: Granular computing using neighborhood systems. In: Roy, R., Furuhashi, T., Chawdhry, P.K. (eds.) Engineering Design and Manufacturing, pp. 539–553. Springer-Verlag, London (1999)

    Chapter  Google Scholar 

  18. Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 19, 111–127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Ligęza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ligęza, A. (2015). Granular Rules and Rule Frames for Compact Knowledge Representation. In: Esposito, F., Pivert, O., Hacid, MS., Rás, Z., Ferilli, S. (eds) Foundations of Intelligent Systems. ISMIS 2015. Lecture Notes in Computer Science(), vol 9384. Springer, Cham. https://doi.org/10.1007/978-3-319-25252-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25252-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25251-3

  • Online ISBN: 978-3-319-25252-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics