Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust Signature Discovery for Affymetrix GeneChip\(^\circledR \) Cancer Classification

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8946))

Included in the following conference series:

Abstract

Phenotype prediction is one of the central issues in genetics and medical sciences research. Due to the advent of high-throughput screening technologies, microarray-based cancer classification has become a standard procedure to identify cancer-related gene signatures. Since gene expression profiling in transcriptome is of high dimensionality, it is a challenging task to discover a biologically functional signature over different cell lines. In this article, we present an innovative framework for finding a small portion of discriminative genes for a specific disease phenotype classification by using information theory. The framework is a data-driven approach and considers feature relevance, redundancy, and interdependence in the context of feature pairs. Its effectiveness has been validated by using a brain cancer benchmark, where the gene expression profiling matrix is derived from Affymetrix Human Genome U95Av2 GeneChip\(^{\textregistered }\). Three multivariate filters based on information theory have also been used for comparison. To show the strengths of the framework, three performance measures, two sets of enrichment analysis, and a stability index have been used in our experiments. The results show that the framework is robust and able to discover a gene signature having a high level of classification performance and being more statistically significant enriched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nevins, J.R., Potti, A.: Mining gene expression profiles: expression signatures as cancer phenotypes. Nature Rev. Genet. 8, 601–609 (2007)

    Article  Google Scholar 

  2. Kim, S.-Y.: Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinform. 10, 147 (2009)

    Article  Google Scholar 

  3. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507–2517 (2007)

    Article  Google Scholar 

  4. Bell, D.A., Wang, H.: A formalism for relevance and its application in feature subset selection. Mach. Learn. 41, 175–195 (2000)

    Article  MATH  Google Scholar 

  5. Ein-Dor, L., Zuk, O., Domany, E.: Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Nat. Acad. Sci. 103, 5923–5928 (2006)

    Article  Google Scholar 

  6. Davies, S., Russell, S.: NP-completeness of searches for smallest possible feature sets. In: Proceedings of the 1994 AAAI Fall Symposium on Relevance, pp. 37–39 (1994)

    Google Scholar 

  7. Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., De Schaetzen, V., Duque, R., Bersini, H., Now, A.: A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 9, 1106–1119 (2012)

    Article  Google Scholar 

  8. Albrecht, A., Vinterbo, S.A., Ohno-Machado, L.: An Epicurean learning approach to gene-expression data classification. Artif. Intell. Med. 28, 75–87 (2003)

    Article  MATH  Google Scholar 

  9. Gheyas, I.A., Smith, L.S.: Feature subset selection in large dimensionality domains. Pattern Recogn. 43, 5–13 (2010)

    Article  MATH  Google Scholar 

  10. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  11. Zhou, X., Tuck, D.P.: MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 23, 1106–1114 (2007)

    Article  Google Scholar 

  12. Mundra, P.A., Rajapakse, J.C.: SVM-RFE with MRMR filter for gene selection. IEEE Trans. NanoBiosci. 9, 31–37 (2010)

    Article  Google Scholar 

  13. Brown, G., Pocock, A., Zhao, M.-J., Luj, N.M.: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. The. J. Mach. Learn. Res. 13, 27–66 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinf. Comput. Biol. 3, 185–205 (2005)

    Article  Google Scholar 

  15. Fleuret, F.: Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5, 1531–1555 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Nutt, C.L., Mani, D., Betensky, R.A., Tamayo, P., Cairncross, J.G., Ladd, C., Pohl, U., Hartmann, C., Mclaughlin, M.E., Batchelor, T.T.: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63, 1602–1607 (2003)

    Google Scholar 

  18. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  19. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)

    MATH  Google Scholar 

  20. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  21. Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using Ensemble feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 313–325. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Nat. Acad. Sci. 102, 15545–15550 (2005)

    Article  Google Scholar 

  23. Wang, J., Duncan, D., Shi, Z., Zhang, B.: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 41, W77–W83 (2013)

    Article  Google Scholar 

  24. Coussens, L.M., Zitvogel, L., Palucka, A.K.: Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339, 286–291 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Ming Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lai, HM., Albrecht, A., Steinhöfel, K. (2015). Robust Signature Discovery for Affymetrix GeneChip\(^\circledR \) Cancer Classification. In: Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds) Agents and Artificial Intelligence. ICAART 2014. Lecture Notes in Computer Science(), vol 8946. Springer, Cham. https://doi.org/10.1007/978-3-319-25210-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25210-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25209-4

  • Online ISBN: 978-3-319-25210-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics