Abstract
We show in this paper how Semantic Query Disambiguation (SQD) combined with Semantic Query Expansion (SQE) can improve the effectiveness of intelligent information retrieval. Firstly, we propose and assess a possibilistic-based approach mixing SQD and SQE. This approach is based on corpus analysis using co-occurrence graphs modeled by possibilistic networks. Indeed, our model for relevance judgment uses possibility theory to take advantage of a double measure (possibility and necessity). Secondly, we propose and evaluate a probabilistic circuit-based approach combining SQD and SQE in an intelligent information retrieval context. In this approach, both SQD and SQE tasks are based on a graph data model, in which circuits between its nodes (words) represent the probabilistic scores for their semantic proximities. In order to compare the performance of these two approaches, we perform our experiments using the standard ROMANSEVAL test collection for the SQD task and the CLEF-2003 benchmark for the SQE process in French monolingual information retrieval evaluation. The results show the impact of SQD on SQE based on the recall/precision standard metrics for both the possibilistic and the probabilistic circuit-based approaches. Besides, the results of the possibilistic approach outperform the probabilistic ones, since it takes into account of imprecision cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Krovetz, R.: Homonymy and polysemy in information retrieval. In: Proceedings of the 8th Conference on European Chapter of the Association for Computational Linguistics, pp. 72–79. Association for Computational Linguistics, Stroudsburg, PA, USA (1997)
Paskalis, F.B.D., Khodra, M.L.: Word sense disambiguation in information retrieval using query expansion. In: International Conference on Electrical Engineering and Informatics (ICEEI), pp. 1–6 (2011)
Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR) 41, 1–69 (2009)
Chan, Y.S., Ng, H.T.: Word sense disambiguation improves statistical machine translation. In: 45th Annual Meeting of the Association for Computational Linguistics (ACL-2007), pp. 33–40 (2007)
Carpuat, M., Wu, D.: Improving statistical machine translation using word sense disambiguation. In: The 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007), pp. 61–72 (2007)
Chifu, A.-G., Ionescu, R.-T.: Word sense disambiguation to improve precision for ambiguous queries. Cent. Eur. J. Comput. Sci. 2, 398–411 (2012)
Krovetz, R., Croft, W.B.: Lexical ambiguity and information retrieval. ACM Trans. Inf. Syst. 10, 115–141 (1992)
Voorhees, E.M.: Using WordNet to disambiguate word senses for text retrieval. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 171–180. ACM, New York, NY, USA (1993)
Schütze, H., Pedersen, J.O.: Information retrieval based on word senses (1995)
Gonzalo, J., Verdejo, F., Chugur, I., Cigarrin, J.: Indexing with WordNet synsets can improve text retrieval. In: Proceedings of the COLING-ACL Workshop on Usage of WordNet in Natural Language Processing Systems, pp. 38–44 (1998)
Stokoe, C., Oakes, M.P., Tait, J.: Word sense disambiguation in information retrieval revisited. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 159–166. ACM, New York, NY, USA (2003)
Kim, S., Seo, H., Rim, H.: Information retrieval using word senses: root sense tagging approach. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 258–265 (2004)
Liu, S., Yu, C., Meng, W.: Word sense disambiguation in queries. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 525–532. ACM, New York, NY, USA (2005)
Zhong, Z., Ng, H.T.: Word sense disambiguation improves information retrieval. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers – vol. 1, pp. 273–282. Association for Computational Linguistics, Stroudsburg, PA, USA (2012)
Elayeb, B., Bounhas, I., Ben Khiroun, O., Evrard, F., Bellamine-BenSaoud, N.: Towards a possibilistic information retrieval system using semantic query expansion. Int. J. Intell. Inf. Technol. 7, 1–25 (2011)
Carpineto, C., Romano, G.: A survey of automatic query expansion in information retrieval. ACM Comput. Surv. (CSUR) 44, 1–50 (2012)
Ben Khiroun, O., Elayeb, B., Bounhas, I., Evrard, F., Bellamine-BenSaoud, N.: A possibilistic approach for automatic word sense disambiguation. In: Proceedings of the 24th Conference on Computational Linguistics and Speech Processing (ROCLING), pp. 261–275, Taiwan (2012)
Ben Khiroun, O., Elayeb, B., Bounhas, I., Evrard, F., Bellamine-BenSaoud, N.: Improving query expansion by automatic query disambiguation in intelligent information retrieval. In: The 6th International Conference on Agents and Artificial Intelligence (ICAART 2014), pp. 153–160. Angers, Loire Valley, France (2014)
Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambiguation using WordNet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 136–145. Springer, Heidelberg (2002)
Sanderson, M.: Word sense disambiguation and information retrieval. In: Croft, B.W., van Rijsbergen, C.J. (eds.) Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’94), pp. 142–151. Springer, New York (1994)
Sanderson, M.: Retrieving with good sense. Inf. Retr. 2, 49–69 (2000)
Gonzalo, J., Peñas, A., Verdejo, F.: Lexical ambiguity and information retrieval revisited. In: Proceedings of the Joint SIGDAT Conference on Empirical Methods in NLP and Very Large Corpora (EMNLP/VLC), pp. 195–202 (1999)
Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet: an on-line lexical database. Int. J. Lexicogr. 3, 235–244 (1990)
Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–281. ACM, New York, NY, USA (1998)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)
Rocchio, J.: Relevance Feedback in Information Retrieval. The SMART Retrieval System, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)
Voorhees, E.M.: Query expansion using lexical-semantic relations. In: Croft, B.W., van Rijsbergen, C.J. (eds.) Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’94), pp. 61–69. Springer, New York (1994)
Smeaton, A.F.: Using NLP or NLP resources for information retrieval tasks. In: Strzalkowski, T. (ed.) Natural Language Information Retrieval, pp. 99–111. Kluwer Academic Publishers, Dordrecht (1997)
Boughanem, M., Brini, A., Dubois, D.: Possibilistic networks for information retrieval. Int. J. Approx. Reason. 50, 957–968 (2009)
Ben Khiroun, O., Elayeb, B., Bounhas, I., Evrard, F., Bellamine Ben Saoud, N.: A possibilistic approach for semantic query expansion. In: The 4th International Conference on Internet Technologies and Applications (ITA 2011), Wrexham Wales (UK), pp. 308–316 (2011)
Elayeb, B.: SARIPOD: Système multi-Agent de Recherche Intelligente POssibiliste de Documents Web. Ph.D. thesis, INP Toulouse France (2009)
Elayeb, B., Evrard, F., Zaghdoud, M., Ben Ahmed, M.: Towards an intelligent possibilistic web information retrieval using multiagent system. Interact. Technol. Smart Educ. (ITSE), Spec. Issue N. Learn. Support Syst. 6, 40–59 (2009)
Fang, H.: A re-examination of query expansion using lexical resources. In: Proceedings of ACL-08: HLT, pp. 139–147 (2008)
Cao, G., Nie, J.-Y., Bai, J.: Integrating word relationships into language models. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 298–305. ACM, New York, NY, USA (2005)
Agirre, E., Arregi, X., Otegi, A.: Document expansion based on WordNet for robust IR. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 9–17. Association for Computational Linguistics, Stroudsburg, PA, USA (2010)
Pinto, F.J., Pérez-sanjulián, C.F.: Automatic query expansion and word sense disambiguation with long and short queries using WordNet under vector model. Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos. 2, 17–23 (2008)
Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)
Dubois, D., Prade, H.: Possibility theory and its application: where do we stand. Mathw. Soft Comput. 18, 18–31 (2011)
Dubois, D., Prade, H.: Possibility theory. In: Meyers, R.A. (ed.) Computational Complexity, pp. 2240–2252. Springer, New York (2012)
Braschler, M., Peters, C.: CLEF 2003 methodology and metrics. In: Peters, C., Gonzalo, J., Braschler, M., Kluck, M. (eds.) CLEF 2003. LNCS, vol. 3237, pp. 7–20. Springer, Heidelberg (2004)
Segond, F.: Framework and results for French. Comput. Humanit. 34, 49–60 (2000)
Ounis, I., Lioma, C., Macdonald, C., Plachouras, V.: Research directions in terrier: a search engine for advanced retrieval on the web. CEPIS Upgrad. J. 8, 49–56 (2007)
Ogilvie, P., Voorhees, E., Callan, J.: On the number of terms used in automatic query expansion. Inf. Retr. 12, 666–679 (2009)
Elayeb, B., Bounhas, I., Ben Khiroun, O., Evrard, F., Bellamine-BenSaoud, N.: A comparative study between possibilistic and probabilistic approaches for monolingual word sense disambiguation. Knowl. Inf. Syst. (2014). doi:10.1007/s10115-014-0753-z
Acknowledgements
We are grateful to the Evaluations and Language resources Distribution Agency (ELDA) which kindly provided us the Le Monde 94 and ATS 94 document collections of the CLEF 2003 campaign.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Elayeb, B., Bounhas, I., Khiroun, O.B., Saoud, N.B.B. (2015). Combining Semantic Query Disambiguation and Expansion to Improve Intelligent Information Retrieval. In: Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds) Agents and Artificial Intelligence. ICAART 2014. Lecture Notes in Computer Science(), vol 8946. Springer, Cham. https://doi.org/10.1007/978-3-319-25210-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-25210-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25209-4
Online ISBN: 978-3-319-25210-0
eBook Packages: Computer ScienceComputer Science (R0)