Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Note on Monitors and Büchi Automata

  • Conference paper
  • First Online:
Theoretical Aspects of Computing - ICTAC 2015 (ICTAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9399))

Included in the following conference series:

Abstract

When a property needs to be checked against an unknown or very complex system, classical exploration techniques like model-checking are not applicable anymore. Sometimes a monitor can be used, that checks a given property on the underlying system at runtime. A monitor for a property L is a deterministic finite automaton \(\mathcal {M}_L\) that after each finite execution tells whether (1) every possible extension of the execution is in L, or (2) every possible extension is in the complement of L, or neither (1) nor (2) holds. Moreover, L being monitorable means that it is always possible that in some future the monitor reaches (1) or (2). Classical examples for monitorable properties are safety and cosafety properties. On the other hand, deterministic liveness properties like “infinitely many a’s” are not monitorable.

We discuss various monitor constructions with a focus on deterministic \(\omega \)-regular languages. We locate a proper subclass of deterministic \(\omega \)-regular languages but also strictly larger than the subclass of languages which are deterministic and codeterministic; and for this subclass there exist canonical monitors which also accept the language itself.

We also address the problem to decide monitorability in comparison with deciding liveness. The state of the art is as follows. Given a Büchi automaton, it is PSPACE-complete to decide liveness or monitorability. Given an LTL formula, deciding liveness becomes EXPSPACE-complete, but the complexity to decide monitorability remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angluin, D., Fisman, D.: Learning regular omega languages. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT 2014. LNCS, vol. 8776, pp. 125–139. Springer, Heidelberg (2014)

    Google Scholar 

  2. Basin, D., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal properties. J. ACM 62, 15:1–15:45 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Diekert, V., Gastin, P.: First-order definable languages. In: Flum, J., Grädel, E., Wilke, Th. (eds.) Logic and Automata: History and Perspectives, Texts in Logic and Games, pp. 261–306. Amsterdam University Press (2008)

    Google Scholar 

  5. Diekert, V., Leucker, M.: Topology, monitorable properties and runtime verification. Theor. Comput. Sci. 537, 29–41 (2014). Special Issue of ICTAC 2012

    Article  MathSciNet  MATH  Google Scholar 

  6. Diekert, V., Muscholl, A.: On distributed monitoring of asynchronous systems. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 70–84. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Gondi, K., Patel, Y., Sistla, A.P.: Monitoring the full range of \(\omega \)-regular properties of stochastic systems. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 105–119. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Hopcroft, J.E., Ulman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    Google Scholar 

  9. Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, University of California (1968)

    Google Scholar 

  10. Knuth, D., Morris, J.H., Pratt, V.: Fast pattern matching in strings. SIAM J. Comput. 6, 323–350 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kupferman, O., Vardi, G.: On relative and probabilistic finite counterabilty. In: Kreutzer, S. (ed.) Proceedings 24th EACSL Annual Conference on Computer Science Logic (CSL 2015). LIPIcs, vol. 41, Dagstuhl, Germany, pp. 175–192. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

    Google Scholar 

  12. Landweber, L.H.: Decision problems for \(\omega \)-automata. Math. Syst. Theory 3(4), 376–384 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebraic Program. 78(5), 293–303 (2009)

    Article  MATH  Google Scholar 

  14. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput. 118, 316–326 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Martugin, P.V.: A series of slowly synchronizing automata with a zero state over a small alphabet. Inf. Comput. 206, 1197–1203 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matiyasevich, Y.: Real-time recognition of the inclusion relation. J. Sov. Math. 1, 64–70 (1973). Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR, vol. 20, pp. 104–114 (1971)

    Article  MATH  Google Scholar 

  17. Nitsche, U., Wolper, P.: Relative liveness and behavior abstraction (extended abstract). In: Burns, J.E., Attiya, H. (eds.) Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing (PODS 1997), Santa Barbara, California, USA, 21–24 August 1997, pp. 45–52. ACM (1997)

    Google Scholar 

  18. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Rystsov, I.: Reset words for commutative and solvable automata. Theor. Comput. Sci. 172, 273–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sistla, A.P., Žefran, M., Feng, Y.: Monitorability of stochastic dynamical systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 720–736. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Staiger, L.: Reguläre Nullmengen. Elektronische Informationsverarbeitung und Kybernetik 12(6), 307–311 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Staiger, L.: Finite-state \(\omega \)-languages. J. Comput. Syst. Sci. 27, 434–448 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Staiger, L., Wagner, K.W.: Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektronische Informationsverarbeitung und Kybernetik 10, 379–392 (1974)

    MathSciNet  MATH  Google Scholar 

  24. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for SystemC. Formal Methods Syst. Des. 41, 236–268 (2012)

    Article  MATH  Google Scholar 

  25. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, chap. 4, pp. 133–191. Elsevier Science Publishers B.V., Amsterdam (1990)

    Google Scholar 

  26. Volkov, M.V.: Synchronizing automata and the Cerný conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Wagner, K.W.: On omega-regular sets. Inf. Control 43, 123–177 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The work was done while the first author was visiting LaBRI in the framework of the IdEx Bordeaux Visiting Professors Programme in June 2015. The hospitality of LaBRI and their members is greatly acknowledged.

The authors thank Andreas Bauer who communicated to us (in June 2012) that the complexity of \(\mathrm {LTL}\)-liveness should be regarded as open because published proofs stating PSPACE-completeness were not convincing. We also thank Ludwig Staiger, Gal Vardi, and Mikhail Volkov for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Diekert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Diekert, V., Muscholl, A., Walukiewicz, I. (2015). A Note on Monitors and Büchi Automata. In: Leucker, M., Rueda, C., Valencia, F. (eds) Theoretical Aspects of Computing - ICTAC 2015. ICTAC 2015. Lecture Notes in Computer Science(), vol 9399. Springer, Cham. https://doi.org/10.1007/978-3-319-25150-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25150-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25149-3

  • Online ISBN: 978-3-319-25150-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics