Nothing Special   »   [go: up one dir, main page]

Skip to main content

The AC-Index: Fast Online Detection of Correlated Alerts

  • Conference paper
  • First Online:
Security and Trust Management (STM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9331))

Included in the following conference series:

Abstract

We propose an indexing technique for alert correlation that supports DFA-like patterns with user-defined correlation functions. Our AC-Index supports (i) the retrieval of the top-k (possibly non-contiguous) sub-sequences, ranked on the basis of an arbitrary user-provided severity function, (ii) the concurrent retrieval of sub-sequences that match any pattern in a given set, (iii) the retrieval of partial occurrences of the patterns, and (iv) the online processing of streaming logs. The experimental results confirm that, although the supported model is very expressive, the AC-Index is able to guarantee a very high efficiency of the retrieval process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some past works assume aciclicity of the patterns because, in many practical cases, (i) the attacker’s control over the network increases monotonically, i.e., the attacker need not relinquish resources already gained during the attack, and (ii) the “criticality” associated with a sequence of alerts does not change when the sequence contains a portion that is repeated multiple times as it matches a cycle in the pattern. In such cases, the overall sequence is equivalent to the one obtained after removing the portion matching the cycle. We do not make this assumption as it would reduce the expressiveness of the model and it is not required by the AC-Index.

  2. 2.

    Note that a security expert may want to discard \(O_2\) and \(O_4\) because they are prefixes of \(O_1\) and \(O_3\) respectively.

  3. 3.

    For simplicity of presentation, the run with all parameters set to default values is reported as three separate runs (6, 9, and 14) in Fig. 7.

References

  1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event streams. In: SIGMOD (2008)

    Google Scholar 

  2. Albanese, M., Jajodia, S., Pugliese, A., Subrahmanian, V.S.: Scalable analysis of attack scenarios. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 416–433. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Albanese, M., Pugliese, A., Subrahmanian, V.S.: Fast activity detection: Indexing for temporal stochastic automaton-based activity models. IEEE Trans. Knowl. Data Eng. 25(2), 360–373 (2013)

    Article  Google Scholar 

  4. Babenko, A., Mariani, L., Pastore, F.: Ava: automated interpretation of dynamically detected anomalies. In: ISSTA (2009)

    Google Scholar 

  5. Bass, T.: Intrusion detection systems and multisensor data fusion. Commun. ACM 43(4), 99–105 (2000)

    Article  Google Scholar 

  6. Branch, J., Bivens, A., Lee, T.K.: Denial of service intrusion detection using time dependent deterministic finite automata. In: Graduate Research Conference (2002)

    Google Scholar 

  7. Creech, G., Hu, J.: A semantic approach to host-based intrusion detection systems using contiguousand discontiguous system call patterns. IEEE Trans. Comput. 63(4), 807–819 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cuppens, F., Miege, A.: Alert correlation in a cooperative intrusion detection framework. In: S&P (2002)

    Google Scholar 

  9. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards expressive publish/subscribe systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 627–644. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.: Cayuga: a general purpose event monitoring system. In: CIDR (2007)

    Google Scholar 

  11. Garcia-Teodoro, P., Díaz-Verdejo, J.E., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009)

    Article  Google Scholar 

  12. Gyllstrom, D., Agrawal, J., Diao, Y., Immerman, N.: On supporting kleene closure over event streams. In: ICDE (2008)

    Google Scholar 

  13. Kosoresow, A.P., Hofmeyr, S.A.: Intrusion detection via system call traces. IEEE Softw. 14(5), 35–42 (1997)

    Article  Google Scholar 

  14. Kruegel, C., Valeur, F., Vigna, G.: Intrusion Detection and Correlation - Challenges and Solutions. Advances in Information Security. Springer, New York (2005)

    MATH  Google Scholar 

  15. Kumar, S., Spafford, E.H.: A pattern matching model for misuse intrusion detection. In: National Computer Security Conference (1994)

    Google Scholar 

  16. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA off-line intrusion detection evaluation. Comp. Netw. 34(4), 579–595 (2000)

    Article  Google Scholar 

  17. Liu, J., Li, R., Liu, Y., Zhang, Z.: Multi-sensor data fusion based on correlation function and fuzzy integration function. Syst. Eng. Electron. 28(7), 1006–1009 (2006)

    MATH  Google Scholar 

  18. Mao, C.H., Pao, H.K., Faloutsos, C., Lee, H.M.: Sbad: Sequence based attack detection via sequence comparison. In: PSDML (2010)

    Google Scholar 

  19. Michael, C., Ghosh, A.: Using finite automata to mine execution data for intrusion detection: a preliminary report. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, p. 66. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Molinaro, C., Moscato, V., Picariello, A., Pugliese, A., Rullo, A., Subrahmanian, V.S.: Padua: parallel architecture to detect unexplained activities. ACM Trans. Internet Techn. 14(1), 3 (2014)

    Article  Google Scholar 

  21. Ning, P., Cui, Y., Reeves, D.S., Xu, D.: Techniques and tools for analyzing intrusion alerts. ACM Trans. Inf. Syst. Secur. 7(2), 274–318 (2004)

    Article  Google Scholar 

  22. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: a logic-based network security analyzer. In: USENIX (2005)

    Google Scholar 

  23. Patcha, A., Park, J.M.: An overview of anomaly detection techniques: existing solutions and latest technological trends. Comp. Netw. 51(12), 3448–3470 (2007)

    Article  Google Scholar 

  24. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comp. Netw. 31(23–24), 2435–2463 (1999)

    Article  Google Scholar 

  25. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Techn. 18(11), 1544–1554 (2008)

    Article  Google Scholar 

  26. Ren, H., Stakhanova, N., Ghorbani, A.A.: An online adaptive approach to alert correlation. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010. LNCS, vol. 6201, pp. 153–172. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: LISA (1999)

    Google Scholar 

  28. Roschke, S., Cheng, F., Meinel, C.: A new alert correlation algorithm based on attack graph. In: Herrero, Á., Corchado, E. (eds.) CISIS 2011. LNCS, vol. 6694, pp. 58–67. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Sadoddin, R., Ghorbani, A.: Alert correlation survey: framework and techniques. In: PST (2006)

    Google Scholar 

  30. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method for detecting anomalous program behaviors. In: S&P (2001)

    Google Scholar 

  31. Sheikhan, M., Jadidi, Z.: Misuse detection using hybrid of association rule mining and connectionist modeling. World Appl. Sci. J. 7, 31–37 (2009)

    Google Scholar 

  32. Shon, T., Moon, J.: A hybrid machine learning approach to network anomaly detection. Inf. Sci. 177(18), 3799–3821 (2007)

    Article  Google Scholar 

  33. Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, p. 54. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  34. Valeur, F., Vigna, G., Krügel, C., Kemmerer, R.A.: A comprehensive approach to intrusion detection alert correlation. IEEE Trans. Dependable Sec. Comput. 1(3), 146–169 (2004)

    Article  Google Scholar 

  35. Vigna, G., Kemmerer, R.A.: Netstat: A network-based intrusion detection system. J. Comput. Secur. 7(1), 37–71 (1999)

    Article  Google Scholar 

  36. Wang, L., Liu, A., Jajodia, S.: Using attack graphs for correlating, hypothesizing, and predicting intrusion alerts. Comput. Commun. 29(15), 2917–2933 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the “Technological District on Cyber Security” PON Project (grant n. PON03PE_00032_2), funded by the Italian Ministry of University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pugliese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pugliese, A., Rullo, A., Piccolo, A. (2015). The AC-Index: Fast Online Detection of Correlated Alerts. In: Foresti, S. (eds) Security and Trust Management. STM 2015. Lecture Notes in Computer Science(), vol 9331. Springer, Cham. https://doi.org/10.1007/978-3-319-24858-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24858-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24857-8

  • Online ISBN: 978-3-319-24858-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics