Nothing Special   »   [go: up one dir, main page]

Skip to main content

Music Recommendation: Audio Neighbourhoods to Discover Music in the Long Tail

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9343))

Included in the following conference series:

Abstract

Millions of people use online music services every day and recommender systems are essential to browse these music collections. Users are looking for high quality recommendations, but also want to discover tracks and artists that they do not already know, newly released tracks, and the more niche music found in the ‘long tail’ of on-line music. Tag-based recommenders are not effective in this ‘long tail’ because relatively few people are listening to these tracks and so tagging tends to be sparse. However, similarity neighbourhoods in audio space can provide additional tag knowledge that is useful to augment sparse tagging. A new recommender exploits the combined knowledge, from audio and tagging, using a hybrid representation that extends the track’s tag-based representation by adding semantic knowledge extracted from the tags of similar music tracks. A user evaluation and a larger experiment using Last.fm user data both show that the new hybrid recommender provides better quality recommendations than using only tags, together with a higher level of discovery of unknown and niche music. This approach of augmenting the representation for items that have missing information, with corresponding information from similar items in a complementary space, offers opportunities beyond content-based music recommendation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://labrosa.ee.columbia.edu/millionsong/lastfm.

  2. 2.

    www.last.fm/api.

  3. 3.

    www.vamp-plugins.org/download.html

  4. 4.

    All tag-based vectors t, t(k), p, \(\tilde{p}\), and h are routinely normalised as unit vectors before use. For clarity, normalisation has been omitted from Eqs. (1) and (2).

References

  1. Nanopoulos, A., Rafailidis, D., Symeonidis, P., Manolopoulos, Y.: MusicBox: personalized music recommendation based on cubic analysis of social tags. IEEE Trans. Audio Speech Lang. Process. 18(2), 407–412 (2010)

    Article  Google Scholar 

  2. Barragáns-Martínez, A.B., Costa-Montenegro, E., Burguillo, J.C., Rey-López, M., Mikic-Fonte, F.A., Peleteiro, A.: A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Inf. Sci. 180(22), 4290–4311 (2010)

    Article  Google Scholar 

  3. Firan, C.S., Nejdl, W., Paiu, R.: The benefit of using tag-based profiles. In: Proceedings of Latin American Web Conference, pp. 32–41 (2007)

    Google Scholar 

  4. Celma, O., Cano, P.: From hits to niches?: Or how popular artists can bias music recommendation and discovery. In: Proceedings of 2nd Netflix-KDD Workshop, pp. 1–8 (2008)

    Google Scholar 

  5. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings 12th International Society for Music Information Retrieval Conference, pp. 591–596 (2011)

    Google Scholar 

  6. Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In: Proceedings of 16th International Conference on World Wide Web, pp. 211–220 (2007)

    Google Scholar 

  7. Bertin-Mahieux, T., Eck, D., Mandel, M.: Automatic tagging of audio: the state-of-the-art. In: Wang, W. (ed.) Machine Audition: Principles, Algorithms and Systems, pp. 334–352. IGI Global, Hershey (2010)

    Google Scholar 

  8. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)

    Article  Google Scholar 

  9. Sordo, M., Laurier, C., Celma, O.: Annotating music collections: How content-based similarity helps to propagate labels. In: Proceedings of 8th International Conference on Music Information Retrieval (ISMIR) (2007)

    Google Scholar 

  10. Horsburgh, B., Craw, S., Massie, S.: Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems. Artif. Intell. 219, 25–39 (2015)

    Article  Google Scholar 

  11. Levy, M., Sandler, M.: Music information retrieval using social tags and audio. IEEE Trans. Multimedia 11(3), 383–395 (2009)

    Article  Google Scholar 

  12. Horsburgh, B., Craw, S., Massie, S., Boswell, R.: Finding the hidden gems: recommending untagged music. In: Proceedings of 22nd International Joint Conference in Artificial Intelligence, pp. 2256–2261. AAAI Press (2011)

    Google Scholar 

  13. Kaminskas, M., Bridge, D.: Measuring surprise in recommender systems. In: Proceedings of ACM RecSys Workshop on Recommender Systems Evaluation: Dimensions and Design (2014)

    Google Scholar 

  14. Zhang, Y.C., Séaghdha, D.Ó., Quercia, D., Jambor, T.: Auralist: introducing serendipity into music recommendation. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining, pp. 13–22 (2012)

    Google Scholar 

  15. Hornung, T., Ziegler, C.N., Franz, S., Przyjaciel-Zablocki, M., Schatzle, A., Lausen, G.: Evaluating hybrid music recommender systems. In: Proceedings of IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 57–64. IEEE (2013)

    Google Scholar 

  16. Horsburgh, B.: Integrating content and semantic representations for music recommendation. PhD thesis, Robert Gordon University (2013)

    Google Scholar 

  17. Celma, O.: Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer, Heidelberg (2010)

    Book  Google Scholar 

  18. Horsburgh, B., Craw, S., Massie, S.: Music-inspired texture representation. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 52–58. AAAI Press (2012)

    Google Scholar 

  19. Mermelstein, P.: Distance measures for speech recognition, psychological and instrumental. Pattern Recogn. Artif. Intell. 116, 91–103 (1976)

    Google Scholar 

  20. Stevens, S., Volkmann, J., Newman, E.: A scale for the measurement of the psychological magnitude pitch. J. Acoust. Soc. Am. 8, 185–190 (1937)

    Article  Google Scholar 

  21. Craw, S., Horsburgh, B., Massie, S.: Music recommenders: User evaluation without real users? In: Proceedings of the 24th International Joint Conference in Artificial Intelligence, pp. 1749–1755. AAAI Press (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Craw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Craw, S., Horsburgh, B., Massie, S. (2015). Music Recommendation: Audio Neighbourhoods to Discover Music in the Long Tail. In: Hüllermeier, E., Minor, M. (eds) Case-Based Reasoning Research and Development. ICCBR 2015. Lecture Notes in Computer Science(), vol 9343. Springer, Cham. https://doi.org/10.1007/978-3-319-24586-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24586-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24585-0

  • Online ISBN: 978-3-319-24586-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics