Abstract
Non-linear registration is an essential step in neuroimaging, influencing both structural and functional analyses. Although important, how different registration methods influence the results of these analyses is poorly known, with the metrics used to compare methods weakly justified. In this work we propose a framework to simulate true deformation fields derived from manually segmented volumes of interest. We test both state-of-the-art binary and non-binary, volumetric and surface -based metrics against these true deformation fields. Our results show that surface-based metrics are twice as sensitive as volume-based metrics, but are typically less used in non-linear registration evaluations. All analysed metrics poorly explained the true deformation field, with none explaining more than half the variance.
Chapter PDF
Similar content being viewed by others
References
Babalola, K., Patenaude, B., Aljabar, P., Schnabel, J., Kennedy, D., Crum, W., Smith, S., Cootes, T., Jenkinson, M., Rueckert, D.: An evaluation of four automatic methods of segmenting the subcortical structures in the brain. NeuroImage 47, 1435–1447 (2009)
Camara, O., Scahill, R., Schnabel, J., Crum, W., Ridgway, G., Hill, D., Fox, N.: Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal data. Med. Image Comput. Comput. Assist. Interv. 10(2), 785–792 (2007)
Camara, O., Schweiger, M., Scahill, R., Crum, W., Sneller, B., Schnabel, J., Ridgway, G., Cash, D., Hill, D., Fox, N.: Phenomenological model of diffuse global and regional atrophy using finite-element methods. IEEE Trans. Med. Imag. 25(11), 1417–1430 (2006)
Hellier, P., Barillot, C., Corouge, I., Gibaud, B., Le Goualher, G., Collins, D., Evans, A., Malandain, G., Ayache, N., [...], Johnson, H.: Retrospective evaluation of intersubject brain registration. IEEE Trans. Med. Imag. 22, 1120–1130 (2003)
Hyder, A.K., Shahbazian, E., Waltz, E. (eds.): Multisensor Fusion. Springer Science & Business Media (2002)
Karaali, B., Davatzikos, C.: Simulation of tissue atrophy using a topology preserving transformation model. IEEE Trans. Med. Imag. 25(5), 649–652 (2006)
Klein, A., Andersson, J., Ardekani, B., Ashburner, J., Avants, B., Chiang, M., Christensen, G., Louis Collinsi, D., Geef, J., [...], Parsey, R.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46, 786–802 (2009)
Murphy, K., van Ginneken, B., Klein, S., Staring, M., de Hoop, B.J., Viergever, M.A., Pluim, J.P.W.: Semi-automatic construction of reference standards for evaluation of image registration. Medical Image Analysis 15(1), 71–84 (2011)
Murphy, K., Ginneken, B., Reinhardt, J., Kabus, S., Ding, K., Deng, X., Cao, K., Du, K., Christensen, G., [...], Pluim, J.: Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge. IEEE Trans. Med. Imag. 30(11), 1901–1920 (2011)
Ou, Y., Akbari, H., Bilello, M., Da, X., Davatzikos, C.: Comparative evaluation of registration algorithms in different brain databases with varying difficulty: results and insights. IEEE Trans. Med. Imag. 33(10), 2039–2065 (2014)
Pieperhoff, P., Sdmeyer, M., Hmke, L., Zilles, K., Schnitzler, A., Amunts, K.: Detection of structural changes of the human brain in longitudinally acquired MR images by deformation field morphometry: methodological analysis, validation and application. NeuroImage 43(2), 269–287 (2008)
Rohlfing, T.: Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans. Med. Imag. 31(2), 153–163 (2012)
Schnabel, J., Tanner, C., Castellano-Smith, A., Degenhard, A., Leach, M., Hose, D., Hill, D., Hawkes, D.: Validation of nonrigid image registration using finite-element methods: application to breast MR images. IEEE Trans. Med. Imag. 22(2), 238–247 (2003)
Wu, G., Kim, M., Wang, Q., Shen, D.: S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images. Hum. Brain Mapp. 35(3), 1044–1060 (2014)
Yassa, M.A., Stark, C.E.L.: A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe. NeuroImage 44, 319–327 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ribeiro, A.S., Nutt, D.J., McGonigle, J. (2015). Which Metrics Should Be Used in Non-linear Registration Evaluation?. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9350. Springer, Cham. https://doi.org/10.1007/978-3-319-24571-3_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-24571-3_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24570-6
Online ISBN: 978-3-319-24571-3
eBook Packages: Computer ScienceComputer Science (R0)