Abstract
Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-BOLD) MRI is a new contrast agent- and stress-free imaging technique for the assessment of myocardial ischemia at rest. The precise registration among the cardiac phases in this cine type acquisition is essential for automating the analysis of images of this technique, since it can potentially lead to better specificity of ischemia detection. However, inconsistency in myocardial intensity patterns and the changes in myocardial shape due to the heart’s motion lead to low registration performance for state-of-the-art methods. This low accuracy can be explained by the lack of distinguishable features in CP-BOLD and inappropriate metric definitions in current intensity-based registration frameworks. In this paper, the sparse representations, which are defined by a discriminative dictionary learning approach for source and target images, are used to improve myocardial registration. This method combines appearance with Gabor and HOG features in a dictionary learning framework to sparsely represent features in a low dimensional space. The sum of absolute differences of these distinctive sparse representations are used to define a similarity term in the registration framework. The proposed approach is validated on a dataset of CP-BOLD MR and standard CINE MR acquired in baseline and ischemic condition across 10 canines.
Chapter PDF
Similar content being viewed by others
References
Aharon, M., et al.: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE TSP 54(11), 4311–4322 (2006)
Avants, B.B., et al.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. MIA 12(1), 26–41 (2008)
Heinrich, M.P., et al.: MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration. MIA 16(7), 1423–1435 (2012)
Huang, X., et al.: Contour tracking in echocardiographic sequences via sparse representation and dictionary learning. MIA 18, 253–271 (2014)
Mukhopadhyay, A., Oksuz, I., Bevilacqua, M., Dharmakumar, R., Tsaftaris, S.A.: Data-driven feature learning for myocardial segmentation of CP-BOLD MRI. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 189–197. Springer, Heidelberg (2015)
Ou, Y., et al.: DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting. MIA 15(4), 622–639 (2011)
Ou, Y., Ye, D.H., Pohl, K.M., Davatzikos, C.: Validation of DRAMMS among 12 popular methods in cross-subject cardiac MRI registration. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 209–219. Springer, Heidelberg (2012)
Pluim, J.P.W., et al.: Mutual-information-based registration of medical images: a survey. TMI 22(8), 986–1004 (2003)
Ramirez, I., et al.: Classification and clustering via dictionary learning with structured incoherence and shared features. In: IEEE CVPR, pp. 3501–3508 (2010)
Rueckert, D., et al.: Nonrigid registration using free-form deformations: application to breast MR images. TMI 18(8), 712–721 (1999)
Rusu, C., Tsaftaris, S.A.: Structured dictionaries for ischemia estimation in cardiac BOLD MRI at rest. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 562–569. Springer, Heidelberg (2014)
Rusu, C., et al.: Synthetic generation of myocardial blood-oxygen-level-dependent MRI time series via structural sparse decomposition modeling. IEEE TMI 7(33), 1422–1433 (2014)
Sotiras, A., et al.: Deformable Medical Image Registration: A Survey Medical Imaging. IEEE TMI 7(32), 1153–1190 (2013)
Studholme, C., et al.: Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change. IEEE TMI 5(25), 626–639 (2006)
Tavakoli, V., et al.: A Survey of shape-based registration and segmentation techniques for cardiac images. CVIU 117, 966–989 (2013)
Tropp, J., et al.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE T. Information Theory 53(12), 4655–4666 (2007)
Tsaftaris, S.A., et al.: Detecting myocardial ischemia at rest with cardiac phase–resolved blood oxygen level–dependent cardiovascular magnetic resonance. Circulation: Cardiovascular Imaging 6(2), 311–319 (2013)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)
Zhuang, X., et al.: A nonrigid registration framework using spatially encoded mutual information and free-form deformations. IEEE TMI 10(30), 1819–1828 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Oksuz, I., Mukhopadhyay, A., Bevilacqua, M., Dharmakumar, R., Tsaftaris, S.A. (2015). Dictionary Learning Based Image Descriptor for Myocardial Registration of CP-BOLD MR. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9350. Springer, Cham. https://doi.org/10.1007/978-3-319-24571-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-24571-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24570-6
Online ISBN: 978-3-319-24571-3
eBook Packages: Computer ScienceComputer Science (R0)