Abstract
Gene annotations are a key concept in bioinformatics and computational methods able to predict them are a fundamental contribution to the field. Several machine learning algorithms are available in this domain; they include relevant parameters that might influence the output list of predicted gene annotations. The amount that the variation of these key parameters affect the output gene annotation lists remains an open aspect to be evaluated. Here, we provide support for such evaluation by introducing two list correlation measures; they are based on and extend the Spearman ρ correlation coefficient and Kendall τ distance, respectively. The application of these measures to some gene annotation lists, predicted from Gene Ontology annotation datasets of different organisms’ genes, showed interesting patterns between the predicted lists. Additionally, they allowed expressing some useful considerations about the prediction parameters and algorithms used.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Karp, P.D.: What we do not know about sequence analysis and sequence databases. Bioinformatics 14(9), 753–754 (1998)
Pandey, G., Kumar, V., Steinbach, M.: Computational approaches for protein function prediction: A survey. Twin Cities: Department of Computer Science and Engineering, University of Minnesota (2006)
Khatri, P., Done, B., Rao, A., Done, A., Draghici, S.: A semantic analysis of the annotations of the human genome. Bioinformatics 21(16), 3416–3421 (2005)
Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numerische Mathematik 14(5), 403–420 (1970)
Consortium, G.O., et al.: Creating the gene ontology resource: design and implementation. Genome Research 11(8), 1425–1433 (2001)
Chicco, D., Masseroli, M.: A discrete optimization approach for svd best truncation choice based on roc curves. In: 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4. IEEE (2013)
Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Machine Learning 56(1-3), 9–33 (2004)
Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. arXiv preprint cmp-lg/9511007 (1995)
Chicco, D., Tagliasacchi, M., Masseroli, M.: Genomic annotation prediction based on integrated information. In: Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds.) CIBB 2011. LNCS, vol. 7548, pp. 238–252. Springer, Heidelberg (2012)
Done, B., Khatri, P., Done, A., Draghici, S.: Semantic analysis of genome annotations using weighting schemes. In: IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, CIBCB 2007, pp. 212–218. IET (2007)
Done, B., Khatri, P., Done, A., Draghici, S.: Predicting novel human gene ontology annotations using semantic analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 7(1), 91–99 (2010)
Pinoli, P., Chicco, D., Masseroli, M.: Enhanced probabilistic latent semantic analysis with weighting schemes to predict genomic annotations. In: 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4. IEEE (2013)
Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57. ACM (1999)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. the Journal of Machine Learning Research 3, 993–1022 (2003)
Masseroli, M., Chicco, D., Pinoli, P.: Probabilistic latent semantic analysis for prediction of gene ontology annotations. In: The 2012 International Joint Conference on eural Networks (IJCNN), pp. 1–8. IEEE (2012)
Pinoli, P., Chicco, D., Masseroli, M.: Latent dirichlet allocation based on gibbs sampling for gene function prediction. In: 2014 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, pp. 1–8. IEEE (2014)
Chicco, D., Sadowski, P., Baldi, P.: Deep autoencoder neural networks for gene ontology annotation predictions. In: Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 533–540. ACM (2014)
Goodman, L.A., Kruskal, W.H.: Measures of association for cross classifications*. Journal of the American Statistical Association 49(268), 732–764 (1954)
Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal on Discrete Mathematics 17(1), 134–160 (2003)
Spearman, C.: The proof and measurement of association between two things. The American Journal of Psychology 15(1), 72–101 (1904)
Kendall, M.G.: A new measure of rank correlation. Biometrika, 81–93 (1938)
Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Computing Surveys (CSUR) 40(4), 11 (2008)
Kumar, R., Vassilvitskii, S.: Generalized distances between rankings. In: Proceedings of the 19th International Conference on World Wide Web, pp. 571–580. ACM (2010)
Bertin-Mahieux, T., Eck, D., Maillet, F., Lamere, P.: Autotagger: A model for predicting social tags from acoustic features on large music databases. Journal of New Music Research 37(2), 115–135 (2008)
Chen, Q., Aickelin, U.: Movie recommendation systems using an artificial immune system. arXiv preprint arXiv:0801.4287 (2008)
Payne, J.S., Stonbam, T.J.: Can texture and image content retrieval methods match human perception?. In: Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 154–157. IEEE (2001)
Ciceri, E., Fraternali, P., Martinenghi, D., Tagliasacchi, M.: Crowdsourcing for Top-K Query Processing over Uncertain Data. IEEE Transactions on Knowledge and Data Engineering (TKDE), 1–14 (preprint) (2015)
Fawcett, T.: Roc graphs: Notes and practical considerations for researchers. Machine Learning 31, 1–38 (2004)
Canakoglu, A., Masseroli, M., Ceri, S., Tettamanti, L., Ghisalberti, G., Campi, A.: Integrative warehousing of biomolecular information to support complex multi-topic queries for biomedical knowledge discovery. In: 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4. IEEE (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chicco, D., Ciceri, E., Masseroli, M. (2015). Extended Spearman and Kendall Coefficients for Gene Annotation List Correlation. In: DI Serio, C., Liò, P., Nonis, A., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2014. Lecture Notes in Computer Science(), vol 8623. Springer, Cham. https://doi.org/10.1007/978-3-319-24462-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-24462-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24461-7
Online ISBN: 978-3-319-24462-4
eBook Packages: Computer ScienceComputer Science (R0)