Abstract
This paper presents and evaluates an integrated power-aware, model-based autonomous control architecture for managing the execution of rover actions in the context of planetary mission exploration. The proposed solution is embedded within an application scenario of reference which consists on a rover-based mission concept aimed at collecting Mars samples that may be returned to Earth at a later date for further investigation. This study elaborates on the exploitation of advanced decision-making capabilities within a flexible execution process targeted at generating and safely executing scheduling solutions representing mission plans, seamlessly supporting online plan optimization and dynamic management of new incoming activities. In this work, an experimental analysis on the performance of the control architecture’s capabilities is presented, throughout two representative cases of study running upon an integrated test-bed platform built on top of the 3DROV ESA planetary rover simulator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baglioni, P., Fisackerly, R., Gardini, B., Giafiglio, G., Pradier, A., Santovincenzo, A., Vago, J., Van Winnendael, M.: The Mars Exploration Plans of ESA (The ExoMars Mission and the Preparatory Activities for an International Mars Sample Return Mission). IEEE Robotics & Automation Magazine 13(2), 83–89 (2006)
Bresina, J.L., Jonsson, A.K., Morris, P.H., Rajan, K.: Activity planning for the mars exploration rovers. In: ICAPS, Monterey, California, USA, pp. 40–49. AAAI (2005)
Cesta, A., Cortellessa, G., Denis, M., Donati, A., Fratini, S., Oddi, A., Policella, N., Rabenau, E., Schulster, J.: Mexar2: AI Solves Mission Planner Problems. IEEE Intelligent Systems 22(4), 12–19 (2007)
Cesta, A., Oddi, A., Smith, S.F.: A Constraint-Based Method for Project Scheduling with Time Windows. J. Heuristics 8(1), 109–136 (2002)
Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castaño, R., Davies, A., Mandl, D., Frye, S., Trout, B., D’Agostino, J., Shulman, S., Boyer, D., Hayden, S., Sweet, A., Christa, S.: Lessons learned from autonomous sciencecraft experiment. In: Fourth International Joint Conference on AAMAS, pp. 11–18. ACM, New York (2005)
Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R., Davies, A., Lee, R., M, D., Frye, S., Trout, B., Hengemihle, J., Shulman, S., Ungar, S., Brakke, T.: The EO-1 autonomous science agent. In: AAMAS, New York City, NY, USA (2004)
Coles, A., Coles, A., Fox, M., Long, D.: A Hybrid LP-RPG Heuristic for Modelling Numeric Resource Flows in Planning. J. Artif. Int. Res. 46(1), 343–412 (2013). http://dl.acm.org/citation.cfm?id=2512538.2512548
Conrad, P.R., Williams, B.: Drake: An Efficient Executive for Temporal Plans with Choice (January 2014). ArXiv e-prints
Diaz, D., Moreno, M.D., Cesta, A., Oddi, A., Rasconi, R.: Efficient Energy Management for Autonomous Control in Rover Missions. IEEE Computational Intelligence Magazine, Special Issue on Computational Intelligence for Space Systems and Operations 8, 12–24 (2013)
Ghallab, M., Nau, D., Traverso, P.: The actor’s view of automated planning and acting: A position paper. Artificial Intelligence 208, 1–17 (2014). http://www.sciencedirect.com/science/article/pii/S0004370213001173
Ingrand, F., Lacroix, S., Lemai-Chenevier, S., Py, F.: Decisional autonomy of planetary rovers. J. Field Robotics 24(7), 559–580 (2007)
Maimone, M.W., Leger, P.C., Biesiadecki, J.J.: Overview of the mars exploration rovers autonomous mobility and vision capabilities. In: IEEE International Conference on Robotics and Automation (ICRA), Roma, Italy (2007)
Mishkin, A., Morrison, J., Nguyen, T., Stone, H., Cooper, B., Wilcox, B.: Experiences with operations and autonomy of the mars pathfinder microrover. In: IEEE Aerospace Conference, Snowmass, CO, USA (1998)
Murphy, R.R.: Introduction to AI Robotics. MIT Press (2000)
Muscettola, N., Nayak, P., Pell, B., Williams, B.: Remote Agents: To Boldly Go Where No AI Systems Has Gone Before. Artificial Intelligence 103(1–2), 5–48 (1998)
Nayak, P.P., Kurien, J., Dorais, G., Millar, W., Rajan, K., Kanefsky, R., Bernard, E.D., Gamble Jr., E.B., Rouquette, N., Smith, D.B., Tung, Y.W., Muscoletta, N., Taylor, W.: Validating the DS1 remote agent experiment. In: International Conference on Artificial Intelligence, Beijing, China, vol. 440 (1999)
Poulakis, P., Joudrier, L., Wailliez, S., Kapellos, K.: 3DROV: a planetary rover system design, simulation and verification tool. In: 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Hollywood, USA (2008)
Putz, P., Elfving, A.: Control Techniques 2, Automation and Robotics Control Development Methodology Definition Report. Tech. Rep. ESA CT2/CDR/DO (1992)
Rasconi, R., Cesta, A., Policella, N.: Validating scheduling approaches against executional uncertainty. Journal of Intelligent Manufacturing 21(1), 49–64 (2010). http://dx.doi.org/10.1007/s10845-008-0172-7
Smith, S.F.: Is scheduling a solved problem? In: Kendall, G., Burke, E., Petrovic, S. (eds.) Proceedings of the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2003), Nottingham, UK, pp. 11–20, August 13–16, 2003
Wettergreen, D., Cabrol, N., Teza, J., Tompkins, P., Urmson, C., Verma, V., Wagner, M., Whittaker, W.: First experiments in the robotic investigation of life in the Atacama Desert of Chile. In: International Conerence on Robotics and Automation, Barcelona, Spain, pp. 9–12890 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Díaz, D., Cesta, A., Oddi, A., Rasconi, R., Rodriguez-Moreno, M.D. (2015). Efficient Power-Aware Resource Constrained Scheduling and Execution for Planetary Rovers. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds) AI*IA 2015 Advances in Artificial Intelligence. AI*IA 2015. Lecture Notes in Computer Science(), vol 9336. Springer, Cham. https://doi.org/10.1007/978-3-319-24309-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-24309-2_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24308-5
Online ISBN: 978-3-319-24309-2
eBook Packages: Computer ScienceComputer Science (R0)