Abstract
Hyper-Heuristics is a high-level methodology for selection or generation of heuristics for solving complex problems. Despite their success, there is a lack of multi-objective hyper-heuristics. Our approach, named MOEA/D-HH\(_{SW}\), is a multi-objective selection hyper-heuristic that expands the MOEA/D framework. MOEA/D decomposes a multiobjective optimization problem into a number of subproblems, where each subproblem is handled by an agent in a collaborative manner. MOEA/D-HH\(_{SW}\) uses an adaptive choice function with sliding window proposed in this work to determine the low level heuristic (Differential Evolution mutation strategy) that should be applied by each agent during a MOEA/D execution. MOEA/D-HH\(_{SW}\) was tested in a well established set of 10 instances from the CEC 2009 MOEA Competition. MOEA/D-HH\(_{SW}\) was favourably compared with state-of-the-art multi-objective optimization algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-heuristics. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
Burke, E.K., Silva, J.L., Silva, A., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Meta-heuristics: Progress as Real Problem Solvers, p. 129. Springer (2003)
Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)
Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for cross domain heuristic search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 307–316. Springer, Heidelberg (2012)
Gonçalves, R.A., Kuk, J.N., Almeida, C.P., Venske, S.M.: MOEA/D-HH: a hyper-heuristic for multi-objective problems. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 94–108. Springer, Heidelberg (2015)
Kateb, D.E., Fouquet, F., Bourcier, J., Traon, Y.L.: Artificial mutation inspired hyper-heuristic for runtime usage of multi-objective algorithms. CoRR abs/1402.4442 (2014). http://arxiv.org/abs/1402.4442
Kendall, G., Soubeiga, E., Cowling, P.: Choice function and random hyperheuristics. In: Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning, SEAL, pp. 667–671. Springer (2002)
Mashwani, W.K., Salhi, A.: A decomposition-based hybrid multiobjective evolutionary algorithm with dynamic resource allocation. Appl. Soft Comput. 12(9), 2765–2780 (2012)
Li, K., Kwong, S., Zhang, Q., Deb, K.: Interrelationship-based selection for decomposition multiobjective optimization. IEEE Transactions on Cybernetics PP(99), 1 (2014)
Maashi, M., Özcan, E., Kendall, G.: A multi-objective hyper-heuristic based on choice function. Expert Systems with Applications 41(9), 4475–4493 (2014)
Sindhya, K., Ruuska, S., Haanpää, T., Miettinen, K.: A new hybrid mutation operator for multiobjective optimization with differential evolution. Soft Comput. 15(10), 2041–2055 (2011)
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
Vazquez-Rodriguez, J.A., Petrovic, S.: A mixture experiments multi-objective hyper-heuristic. J. Oper. Res. Soc. 64(11), 1664–1675 (2013)
Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. Tech. rep., University of Essex and Nanyang Technological University, CES-487 (2008)
Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Congress on Evolutionary Computation, pp. 203–208 (2009)
Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Gonçalves, R.A., Kuk, J.N., Almeida, C.P., Venske, S.M. (2015). Decomposition Based Multiobjective Hyper Heuristic with Differential Evolution. In: Núñez, M., Nguyen, N., Camacho, D., Trawiński, B. (eds) Computational Collective Intelligence. Lecture Notes in Computer Science(), vol 9330. Springer, Cham. https://doi.org/10.1007/978-3-319-24306-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-24306-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24305-4
Online ISBN: 978-3-319-24306-1
eBook Packages: Computer ScienceComputer Science (R0)