Nothing Special   »   [go: up one dir, main page]

Skip to main content

Decomposition Based Multiobjective Hyper Heuristic with Differential Evolution

  • Conference paper
  • First Online:
Computational Collective Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9330))

Abstract

Hyper-Heuristics is a high-level methodology for selection or generation of heuristics for solving complex problems. Despite their success, there is a lack of multi-objective hyper-heuristics. Our approach, named MOEA/D-HH\(_{SW}\), is a multi-objective selection hyper-heuristic that expands the MOEA/D framework. MOEA/D decomposes a multiobjective optimization problem into a number of subproblems, where each subproblem is handled by an agent in a collaborative manner. MOEA/D-HH\(_{SW}\) uses an adaptive choice function with sliding window proposed in this work to determine the low level heuristic (Differential Evolution mutation strategy) that should be applied by each agent during a MOEA/D execution. MOEA/D-HH\(_{SW}\) was tested in a well established set of 10 instances from the CEC 2009 MOEA Competition. MOEA/D-HH\(_{SW}\) was favourably compared with state-of-the-art multi-objective optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-heuristics. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  2. Burke, E.K., Silva, J.L., Silva, A., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Meta-heuristics: Progress as Real Problem Solvers, p. 129. Springer (2003)

    Google Scholar 

  3. Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for cross domain heuristic search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 307–316. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Gonçalves, R.A., Kuk, J.N., Almeida, C.P., Venske, S.M.: MOEA/D-HH: a hyper-heuristic for multi-objective problems. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 94–108. Springer, Heidelberg (2015)

    Google Scholar 

  6. Kateb, D.E., Fouquet, F., Bourcier, J., Traon, Y.L.: Artificial mutation inspired hyper-heuristic for runtime usage of multi-objective algorithms. CoRR abs/1402.4442 (2014). http://arxiv.org/abs/1402.4442

  7. Kendall, G., Soubeiga, E., Cowling, P.: Choice function and random hyperheuristics. In: Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning, SEAL, pp. 667–671. Springer (2002)

    Google Scholar 

  8. Mashwani, W.K., Salhi, A.: A decomposition-based hybrid multiobjective evolutionary algorithm with dynamic resource allocation. Appl. Soft Comput. 12(9), 2765–2780 (2012)

    Article  Google Scholar 

  9. Li, K., Kwong, S., Zhang, Q., Deb, K.: Interrelationship-based selection for decomposition multiobjective optimization. IEEE Transactions on Cybernetics PP(99), 1 (2014)

    Google Scholar 

  10. Maashi, M., Özcan, E., Kendall, G.: A multi-objective hyper-heuristic based on choice function. Expert Systems with Applications 41(9), 4475–4493 (2014)

    Article  Google Scholar 

  11. Sindhya, K., Ruuska, S., Haanpää, T., Miettinen, K.: A new hybrid mutation operator for multiobjective optimization with differential evolution. Soft Comput. 15(10), 2041–2055 (2011)

    Article  Google Scholar 

  12. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vazquez-Rodriguez, J.A., Petrovic, S.: A mixture experiments multi-objective hyper-heuristic. J. Oper. Res. Soc. 64(11), 1664–1675 (2013)

    Article  Google Scholar 

  14. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. Tech. rep., University of Essex and Nanyang Technological University, CES-487 (2008)

    Google Scholar 

  15. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Congress on Evolutionary Computation, pp. 203–208 (2009)

    Google Scholar 

  16. Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gonçalves, R.A., Kuk, J.N., Almeida, C.P., Venske, S.M. (2015). Decomposition Based Multiobjective Hyper Heuristic with Differential Evolution. In: Núñez, M., Nguyen, N., Camacho, D., Trawiński, B. (eds) Computational Collective Intelligence. Lecture Notes in Computer Science(), vol 9330. Springer, Cham. https://doi.org/10.1007/978-3-319-24306-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24306-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24305-4

  • Online ISBN: 978-3-319-24306-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics