Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Construction of Domain Specific Sentiment Lexicons for Hungarian

  • Conference paper
  • First Online:
Text, Speech, and Dialogue (TSD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9302))

Included in the following conference series:

Abstract

Sentiment analysis has become an actively researched area recently, which aims to detect positive and negative opinions in texts. A good indicator for the polarity of a given text is the number of words in it that have positive or negative meanings. The so called sentiment lexicons are lists containing words together with their polarities. In this paper we present methods for creating sentiment lexicons automatically. We use these lexicons in sentiment analysis tasks on general and domain-specific Hungarian corpora. We compare the efficiency of sentiment lexicons from different domains and show the importance of using domain-specific sentiment lexicons for different sentiment analysis tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation, LREC 2010 (2010)

    Google Scholar 

  2. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354. Association for Computational Linguistics (2005)

    Google Scholar 

  3. Miháltz, M.: OpinHuBank: szabadon hozzáférhető annotált korpusz magyar nyelvű véleményelemzéshez. In: IX. Magyar Számítógépes Nyelvészeti Konferencia, pp. 343–345 (2013)

    Google Scholar 

  4. Liu, B.: Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies 5(1), 1–167 (2012)

    Article  MathSciNet  Google Scholar 

  5. Turney, P.D., Littman, M.L.: Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems (TOIS) 21(4), 315–346 (2003)

    Article  Google Scholar 

  6. Miháltz, M., Hatvani, C., Kuti, J., Szarvas, G., Csirik, J., Prószéky, G., Váradi, T.: Methods and results of the Hungarian WordNet project. In: Proceedings of the Fourth Global WordNet Conference, GWC 2008. Citeseer (2008)

    Google Scholar 

  7. Brown, P.F., Desouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based n-gram models of natural language. Computational Linguistics 18(4), 467–479 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Hangya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hangya, V. (2015). Automatic Construction of Domain Specific Sentiment Lexicons for Hungarian. In: Král, P., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2015. Lecture Notes in Computer Science(), vol 9302. Springer, Cham. https://doi.org/10.1007/978-3-319-24033-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24033-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24032-9

  • Online ISBN: 978-3-319-24033-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics