Abstract
We present new symbolic-numeric algorithms for solving the Schrödinger equation describing the scattering problem and resonance states. The boundary-value problems are formulated and discretized using the finite element method with interpolating Hermite polynomials, which provide the required continuity of the derivatives of the approximated solutions. The efficiency of the algorithms and programs implemented in the Maple computer algebra system is demonstrated by analysing the scattering problems and resonance states for the Schrödinger equation with continuous (piecewise continuous) real (complex) potentials like single (double) barrier (well).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kotlyar, V.V., Kovalev, A.A., Nalimov, A.G.: Gradient microoptical elements for achieving superresolution. Kompyuternaya optika 33, 369–378 (2009). (in Russian)
Rezanur Rakhman, K.M., Sevastyanov, L.A.: One-dimensional scattering problem at stepwise potential with non-coincident asymptotic forms. Vestnik RUDN, ser. Fizika No. 5 (1), 35–38 (1997) (in Russian)
Sevastyanov, L.A., Sevastyanov, A.L., Tyutyunnik, A.A.: Analytical calculations in maple to implement the method of adiabatic modes for modelling smoothly irregular integrated optical waveguide structures. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 419–431. Springer, Heidelberg (2014)
Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Kaschiev, M.S., Rostovtsev, V.A., Samoylov, V., Tupikova, T., Vinitsky, S.I.: A symbolic-numerical algorithm for solving the eigenvalue problem for a hydrogen atom in the magnetic field: cylindrical coordinates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 118–133. Springer, Heidelberg (2007)
Gusev, A.A., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I., Derbov, V.L., Serov, V.V.: Symbolic-numeric algorithms for computer analysis of spheroidal quantum dot models. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 106–122. Springer, Heidelberg (2010)
Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.: Symbolic-numerical algorithms to solve the quantum tunneling problem for a coupled pair of ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)
Vinitsky, S., Gusev, A., Chuluunbaatar, O., Rostovtsev, V., Le Hai, L., Derbov, V., Krassovitskiy, P.: Symbolic-numerical algorithm for generating cluster eigenfunctions: tunneling of clusters through repulsive barriers. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 427–442. Springer, Heidelberg (2013)
Vinitsky, S., Gusev, A., Chuluunbaatar, O., Le Hai, L., Góźdź, A., Derbov, V., Krassovitskiy, P.: Symbolic-numeric algorithm for solving the problem of quantum tunneling of a diatomic molecule through repulsive barriers. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 472–490. Springer, Heidelberg (2014)
Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 3.0: New version of a program for computing energy levels, reflection and transmission matrices, and corresponding wave functions in the coupled-channel adiabatic approach. Comput. Phys. Commun. 185, 3341–3343 (2014)
Molinàs-Mata, P., Molinàs-Mata, P.: Electron absorption by complex potentials: One-dimensional case. One-dimensional case. Phys. Rev. A 54, 2060–2065 (1996)
Ahmed, Z.: Schrödinger transmission through one-dimensional complex potentials. Phys. Rev. A 64, 042716 (2001)
Ahmed, Z.: Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT -invariant potential. Phys. Lett. A 282, 343–348 (2001)
Cerveró, J.M., Rodríguez, A.: Absorption in atomic wires. Phys. Rev. A 70, 052705 (2004)
Muga, J.G., Palao, J.P., Navarro, B., Egusquiza, I.L.: Complex absorbing potentials. Phys. Reports 395, 357–426 (2004)
Cannata, F., Dedonder, J.-P., Ventura, A.: Scattering in PT-symmetric quantum mechanics. Annals of Physics 322, 397–433 (2007)
Becker, E.B., Carey, G.F., Oden, T.J.: Finite elements. An introduction, vol. I. Prentice-Hall Inc., Englewood Cliffs (1981)
Ram-Mohan, R.L.: Finite Element and Boundary Element Aplications in Quantum Mechanics. Oxford University Press, New York (2002)
Amodio, P., Blinkov, Y., Gerdt, V., La Scala, R.: On consistency of finite difference approximations to the navier-stokes equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 46–60. Springer, Heidelberg (2013)
Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L., Góźdź, A., Le Hai, L., Rostovtsev, V.A.: Symbolic-numerical solution of boundary-value problems with self-adjoint second-order differential equation using the finite element method with interpolation hermite polynomials. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 138–154. Springer, Heidelberg (2014)
Berezin, I.S., Zhidkov, N.P.: Computing Methods, vol. I. Pergamon Press, Oxford (1965)
Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)
Kukulin, V.I., Krasnopol’sky, V.M., Horáček, J.: Theory of Resonances, pp. 107–112. Academia, Praha (1989)
Siegert, A.J.F.: On the derivation of the dispersion formula for nuclear reactions. Phys. Rev. 56, 750–752 (1939)
Ermakov, V.V., Kalitkin, N.N.: The optimal step and regularization for Newton’s method. USSR Computational Mathematics and Mathematical Physics 21, 235–242 (1981)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Gusev, A.A. et al. (2015). Symbolic-Numeric Solution of Boundary-Value Problems for the Schrödinger Equation Using the Finite Element Method: Scattering Problem and Resonance States. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-24021-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24020-6
Online ISBN: 978-3-319-24021-3
eBook Packages: Computer ScienceComputer Science (R0)