Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Features for Tissue Classification with the Classification Restricted Boltzmann Machine

  • Conference paper
  • First Online:
Medical Computer Vision: Algorithms for Big Data (MCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8848))

Included in the following conference series:

Abstract

Performance of automated tissue classification in medical imaging depends on the choice of descriptive features. In this paper, we show how restricted Boltzmann machines (RBMs) can be used to learn features that are especially suited for texture-based tissue classification. We introduce the convolutional classification RBM, a combination of the existing convolutional RBM and classification RBM, and use it for discriminative feature learning. We evaluate the classification accuracy of convolutional and non-convolutional classification RBMs on two lung CT problems. We find that RBM-learned features outperform conventional RBM-based feature learning, which is unsupervised and uses only a generative learning objective, as well as often-used filter banks. We show that a mixture of generative and discriminative learning can produce filters that give a higher classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. Technical report, Université de Montréal (2012)

    Google Scholar 

  2. Li, Q., Cai, W., Feng, D.D.: Lung image patch classification with automatic feature learning. In: 35th Annual International Conference on Engineering in Medicine and Biology Society (EMBC) (2013)

    Google Scholar 

  3. Brosch, T., Tam, R.: Manifold learning of brain MRIs by deep learning. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 633–640. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Larochelle, H., Mandel, M., Pascanu, R., Bengio, Y.: Learning algorithms for the classification restricted Boltzmann machine. J. Machin. Learn. Res. 13, 643–669 (2012)

    MATH  MathSciNet  Google Scholar 

  5. Desjardins, G., Bengio, Y.: Empirical evaluation of convolutional RBMs for vision. Technical report, Université de Montréal (2008)

    Google Scholar 

  6. Norouzi, M., Ranjbar, M., Mori, G.: Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  7. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: The 26th International Conference on Machine Learning (ICML) (2009)

    Google Scholar 

  8. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM 54(10), 95–103 (2011)

    Article  Google Scholar 

  9. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. Technical report. University of Toronto (2010)

    Google Scholar 

  10. Pedersen, J.H., Ashraf, H., Dirksen, A., et al.: The Danish randomized lung cancer CT screening trial—overall design and results of the prevalence round. J. Thorac. Oncol. 4(5), 608–614 (2009)

    Article  Google Scholar 

  11. Petersen, J., Nielsen, M., Lo, P., Saghir, Z., Dirksen, A., de Bruijne, M.: Optimal graph based segmentation using flow lines with application to airway wall segmentation. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 49–60. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Depeursinge, A., Vargas, A., Platon, A., Geissbuhler, A., Poletti, P.A., Müller, H., et al.: Building a reference multimedia database for interstitial lung diseases. Comput. Med. Imaging Graph. 36(3), 227–238 (2012)

    Article  Google Scholar 

  13. Depeursinge, A., Van de Ville, D., Platon, A., Geissbuhler, A., Poletti, P.A., Müller, H.: Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames. Trans. Inf. Technol. Biomed. 16, 665–675 (2012)

    Article  Google Scholar 

  14. Varma, M.: A statistical approach to material classification using image patch exemplars. Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)

    Article  Google Scholar 

  15. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  16. Schmid, C.: Constructing models for content-based image retrieval. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2001)

    Google Scholar 

  17. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  18. Yang, Z., Sun, X., Hardin, J.W.: A note on the tests for clustered matched-pair binary data. Biometrical J. 52(5), 638–652 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Durkalski, V.L., Palesch, Y.Y., Lipsitz, S.R., Rust, P.F.: Analysis of clustered matched-pair data. Stat. Med. 22(15), 2417–2428 (2003)

    Article  Google Scholar 

  20. Saxe, A.M., Koh, P.W., Chen, Z., Bhand, M., Suresh, B., Ng, A.Y.: On random weights and unsupervised feature learning. In: The International Conference on Machine Learning (ICML) (2011)

    Google Scholar 

Download references

Acknowledgment

This research is financed by the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gijs van Tulder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

van Tulder, G., de Bruijne, M. (2014). Learning Features for Tissue Classification with the Classification Restricted Boltzmann Machine. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2014. Lecture Notes in Computer Science(), vol 8848. Springer, Cham. https://doi.org/10.1007/978-3-319-13972-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13972-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13971-5

  • Online ISBN: 978-3-319-13972-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics