Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mining Mobile Phone Data to Investigate Urban Crime Theories at Scale

  • Chapter
Social Informatics (SocInfo 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8851))

Included in the following conference series:

  • International Conference on Social Informatics

Abstract

Prior work in architectural and urban studies suggests that there is a strong correlation between people dynamics and crime activities in an urban environment. These studies have been conducted primarily using qualitative evaluation methods, and as such are limited in terms of the geographic area they cover, the number of respondents they reach out to, and the temporal frequency with which they can be repeated. As cities are rapidly growing and evolving complex entities, complementary approaches that afford social scientists the ability to evaluate urban crime theories at scale are required. In this paper, we propose a new method whereby we mine telecommunication data and open crime data to quantitatively observe these theories. More precisely, we analyse footfall counts as recorded by telecommunication data, and extract metrics that act as proxies of urban crime theories. Using correlation analysis between such proxies and crime activity derived from open crime data records, we can reveal to what extent different theories of urban crime hold, and where. We apply this approach to the metropolitan area of London, UK and find significant correlations between crime and metrics derived from theories by Jacobs (e.g., population diversity) and by Felson and Clarke (e.g., ratio of young people). We conclude the paper with a discussion of the implications of this work on social science research practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F., Pentland, A.: Once upon a crime: Towards crime prediction from demographics and mobile data. In: ICMI (2014)

    Google Scholar 

  2. Boyd, D., Crawford, K.: Critical questions for big data. Information, Communication and Society 15(5), 662–679 (2012)

    Article  Google Scholar 

  3. Chainey, S., Reid, S., Stuart, N.: When is a hotspot a hotspot? a procedure for creating statistically robust hotspot maps of crime. Innovations in GIS 9 Socio-economic Applications of Geographic Information Science (2002)

    Google Scholar 

  4. Chainey, S.P., Tompson, L., Uhlig, S.: The utility of hotspot mapping for predicting spatial patterns of crime. Security Journal 21(1-2), 4–28 (2008)

    Article  Google Scholar 

  5. Chaplin, R., Flatley, J., Smith, K.: Home office statistical bulletin: Crime in england and wales 2010/11. Home Office Statistical Bulletin (2011)

    Google Scholar 

  6. Christens, B., Speer, P.W.: Predicting violent crime using urban and suburban densities. Behavior and Social Issues (14), 113–127 (2005)

    Article  Google Scholar 

  7. Eagle, N., Macy, M.: Network diversity and economic development. Science (1029) (2010)

    Google Scholar 

  8. Eck, J., Chainey, S., Cameron, J., Leitner, M., Wilson, R.: Mapping crime: Understanding hot spots. Special Report NIJ (2005)

    Google Scholar 

  9. Felson, M., Clarke, R.: Opportunity Makes the Thief: Practical theory of crime prevention. Home Office (1998)

    Google Scholar 

  10. Felson, M., Poulsen, E.: Simple indicators of crime by time of day. International Journal of Forecasting (19), 595–601 (2003)

    Article  Google Scholar 

  11. Hubert, L.J., Golledge, R.G.: Measuring association between spatially defined variables: Tjostheim’s index and some extensions. Geographical Analysis (14), 273–278 (1982)

    Article  Google Scholar 

  12. Jacobs, J.: The Death and Life of Great American Cities. Random House Inc. (1961)

    Google Scholar 

  13. Jansson, K.: British Crime Survey: Measuring crime for 25 years (2006)

    Google Scholar 

  14. Legendre, P.: Spatial autocorrelation: Trouble or new paradigm? Ecology 74(6), 1659–1673 (1993)

    Article  Google Scholar 

  15. Newman, P.: Defensible Space: Crime Prevention Through Urban Design. Macmillian Pub. Co. (1972)

    Google Scholar 

  16. Paynich, R.: Identifying high crime areas. International Association of Crime Analysts (2) (2013)

    Google Scholar 

  17. Prasetyo, P.K., Gao, M., Lim, E.P., Scollon, C.N.: Social sensing for urban crisis management: The case of singapore haze. In: Proc of SocInfo 2013, pp. 478–491 (2013)

    Google Scholar 

  18. Sahbaz, O., Hiller, B.: The story of the crime: functional, temporal and spatial tendencies in street robbery. In: Proc of 6th International Space Syntax Symposium, Istanbul, pp. 4–14 (2007)

    Google Scholar 

  19. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  20. Clarke, C.S., Mashhadi, A., Capra, L.: Poverty on the cheap: estimating poverty maps using aggregated mobile communication. In: Proc of CHI 2014, pp. 511–520 (2014)

    Google Scholar 

  21. Snyder, M.: The impact of recent immigration on the london economy. Technical report, London School of Economics and Political Science (2007)

    Google Scholar 

  22. Song, W., Daqian, L.: Exploring spatial patterns of property crime risks in changchun, china. International Journal of Applied Geospatial Research 4(3), 80–100 (2013)

    Article  Google Scholar 

  23. Tan, S.-Y., Haining, R.: An urban study of crime and health using an exploratory spatial data analysis approach. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part I. LNCS, vol. 5592, pp. 269–284. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Tjostheim, D.: A measure of association for spatial variables. Biometrika (65,1), 109–114 (1978)

    Article  MathSciNet  Google Scholar 

  25. Tobler, W.R.: A computer movie simulating urban growth in the detroit region. Economic Geography 46, 234–240 (1970)

    Article  Google Scholar 

  26. Wakamiya, S., Lee, R., Sumiya, K.: Social-urban neighborhood search based on crowd footprints network. In: Jatowt, A., Lim, E.-P., Ding, Y., Miura, A., Tezuka, T., Dias, G., Tanaka, K., Flanagin, A., Dai, B.T. (eds.) SocInfo 2013. LNCS, vol. 8238, pp. 429–442. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Wang, D., Ding, W., Lo, H., Stepinski, T., Salazar, J., Morabito, M.: Crime hotspot mapping using the crime related factors - a spatial data mining approach. Applied Intelligence 39(4), 772–781 (2006)

    Article  Google Scholar 

  28. Wang, X., Gerber, M.S., Brown, D.E.: Automatic crime prediction using events extracted from twitter posts. In: Yang, S.J., Greenberg, A.M., Endsley, M. (eds.) SBP 2012. LNCS, vol. 7227, pp. 231–238. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. U. H. WHO. Hidden cities: unmasking and overcoming health inequities in urban settings. WHO, Library Cataloguing-in-Publication Data (2010)

    Google Scholar 

  30. Wolfe, M.K., Mennis, J.: Does vegetation encourage or suppress urban crime? Evidence from Philadelphia, PA. Landscape and Urban Planning 108, 112–122 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Traunmueller, M., Quattrone, G., Capra, L. (2014). Mining Mobile Phone Data to Investigate Urban Crime Theories at Scale. In: Aiello, L.M., McFarland, D. (eds) Social Informatics. SocInfo 2014. Lecture Notes in Computer Science, vol 8851. Springer, Cham. https://doi.org/10.1007/978-3-319-13734-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13734-6_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13733-9

  • Online ISBN: 978-3-319-13734-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics