Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parameter Comparison Between Fast-Water-Exchange-Limit-Constrained Standard and Water-Exchange-Modified Dual-Input Tracer Kinetic Models for DCE-MRI in Advanced Hepatocellular Carcinoma

  • Conference paper
  • First Online:
Abdominal Imaging. Computational and Clinical Applications (ABD-MICCAI 2014)

Abstract

Dynamic contrast-enhanced MRI (DCE-MRI) data have often been analyzed using classic standard tracer kinetic models that assume a fast-exchange limit (FXL) of water. Recently, it has been demonstrated that deviations from the FXL model occurs when contrast agent arrives at the target tissue. However, no systematic analysis has been reported for the liver tumor with dual blood supply. In this study, we compared kinetic parameter estimates from DCE-MRI in advanced hepatocellular carcinoma that have the same physiological meaning between five different FXL standard dual-input tracer kinetic models and their corresponding water-exchange-modified (WX) versions. Kinetic parameters were estimated by fitting data to analytic solutions of five different FXL models and their WX versions based on a full two-site-exchange model for transcytolemmal water exchange or a full three-site-two-exchange model for transendothelial and transcytolemmal water exchange. Results suggest that parameter values differ substantially between the FXL standard and WX tracer kinetic models, indicating that DCE-MRI data are water-exchange-sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Padhani, A.R.: Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J. Magn. Reason. Imaging 16, 407–422 (2002)

    Article  Google Scholar 

  2. Sahani, D.V., Jiang, T., Hayano, K., Duda, D.G., Catalano, O.A., Ancukiewicz, M., Jain, R.K., Zhu, A.X.: Magnetic resonance imaging biomarkers in hepatocellular carcinoma: association with response and circulating biomarkers after sunitinib therapy. J. Hematol. Oncol. 6, 51 (2013). doi:10.1186/1756-8722-6-51

    Article  Google Scholar 

  3. Chiandussi, L., Greco, F., Sardi, G., Vaccarino, A., Ferraris, C.M., Curti, B.: Estimation of hepatic arterial and portal venous blood flow by direct catheterization of the vena porta through the umbilical cord in man. Preliminary results. Acta Hepatosplenol. 15, 166–171 (1968)

    Google Scholar 

  4. Materne, R., Smith, A.M., Peeters, F., Dehoux, J.P., Keyeux, A., Horsmans, Y., Van Beers, B.E.: Assessment of hepatic perfusion parameters with dynamic MRI. Magn. Reson. Med. 47, 135–142 (2002)

    Article  Google Scholar 

  5. Koh, T.S., Thng, C.H., Hartono, S., Kwek, J.W., Khoo, J.B., Miyazaki, K., Collins, D.J., Orton, M.R., Leach, M.O., Lewington, V., Koh, D.M.: Dynamic contrast-enhanced MRI of neuroendocrine hepatic metastases: a feasibility study using a dual-input two-compartment model. Magn. Reson. Med. 65, 250–260 (2011)

    Article  Google Scholar 

  6. Li, X., Rooney, W.D., Springer Jr., C.S.: A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn. Reson. Med. 54, 1351–1359 (2005)

    Article  Google Scholar 

  7. Herbst, M.D., Goldstein, J.H.: A review of water diffusion measurement by NMR in human red blood cells. Am. J. Physiol. 256, C1097–C1104 (1989)

    Google Scholar 

  8. Donahue, K.M., Weisskoff, R.M., Burstein, D.: Water diffusion and exchange as they influence contrast enhancement. J. Magn. Reson. Imaging 7, 102–110 (1997)

    Article  Google Scholar 

  9. Landis, C.S., Li, X., Telang, F.W., Coderre, J.A., Micca, P.L., Rooney, W.D., Latour, L.L., Vetek, G., Palyka, I., Springer Jr., C.S.: Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn. Reson. Med. 44, 563–574 (2000)

    Article  Google Scholar 

  10. Landis, C.S., Li, X., Telang, F.W., Molina, P.E., Palyka, I., Vetek, G., Springer Jr., C.S.: Equilibrium transcytolemmal water-exchange kinetics in skeletal muscle in vivo. Magn. Reson. Med. 42, 467–478 (1999)

    Article  Google Scholar 

  11. Koh, T.S., Bisdas, S., Koh, D.M., Thng, C.H.: Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI. J. Magn. Reson. Imaging 34, 1262–1276 (2011)

    Article  Google Scholar 

  12. Donahue, K.M., Weisskoff, R.M., Chesler, D.A., Kwong, K.K., Bogdanov Jr., A.A., Mandeville, J.B., Rosen, B.R.: Improving MR quantification of regional blood volume with intravascular T1 contrast agents: accuracy, precision, and water exchange. Magn. Reson. Med. 36, 858–867 (1996)

    Article  Google Scholar 

  13. Orton, M.R., d’Arcy, J.A., Walker-Samuel, S., Hawkes, D.J., Atkinson, D., Collins, D.J., Leach, M.O.: Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys. Med. Biol. 53, 1225–1239 (2008)

    Article  Google Scholar 

  14. Brix, G., Griebel, J., Kiessling, F., Wenz, F.: Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. Eur. J. Nucl. Med. Mol. Imaging 37(Suppl 1), S30–S51 (2010)

    Article  Google Scholar 

  15. Tofts, P.S., Brix, G., Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B., Lee, T.Y., Mayr, N.A., Parker, G.J., Port, R.E., Taylor, J., Weisskoff, R.M.: Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 10, 223–232 (1999)

    Article  Google Scholar 

  16. Sourbron, S.P., Buckley, D.L.: On the scope and interpretation of the tofts models for DCE-MRI. Magn. Reson. Med. 66, 735–745 (2011)

    Article  Google Scholar 

  17. Brix, G., Bahner, M.L., Hoffmann, U., Horvath, A., Schreiber, W.: Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT–initial experience. Radiology 210, 269–276 (1999)

    Article  Google Scholar 

  18. St. Lawrence, K.S., Lee, T.Y.: An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J. Cereb. Blood Flow Metab. 18, 1365–1377 (1998)

    Article  Google Scholar 

  19. Koh, T.S.: On the a priori identifiability of the two-compartment distributed parameter model from residual tracer data acquired by dynamic contrast-enhanced imaging. IEEE Trans. Biomed. Eng. 55, 340–344 (2008)

    Article  Google Scholar 

  20. Spencer, R.G., Fishbein, K.W.: Measurement of spin-lattice relaxation times and concentrations in systems with chemical exchange using the one-pulse sequence: breakdown of the Ernst model for partial saturation in nuclear magnetic resonance spectroscopy. J. Magn. Reson. 142, 120–135 (2000)

    Article  Google Scholar 

  21. Paudyal, R., Poptani, H., Cai, K., Zhou, R., Glickson, J.D.: Impact of transvascular and cellular-interstitial water exchange on dynamic contrast-enhanced magnetic resonance imaging estimates of blood to tissue transfer constant and blood plasma volume. J. Magn. Reson. Imaging 37, 435–444 (2013)

    Article  Google Scholar 

  22. Zhang, J., Kim, S.: Uncertainty in MR tracer kinetic parameters and water exchange rates estimated from T -weighted dynamic contrast enhanced MRI. Magn. Reson. Med. (2013)

    Google Scholar 

  23. Yankeelov, T.E., Rooney, W.D., Li, X., Springer Jr., C.S.: Variation of the relaxographic “shutter-speed” for transcytolemmal water exchange affects the CR bolus-tracking curve shape. Magn. Reson. Med. 50, 1151–1169 (2003)

    Article  Google Scholar 

  24. Tofts, P.S., Berkowitz, B., Schnall, M.D.: Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn. Reson. Med. 33, 564–568 (1995)

    Article  Google Scholar 

  25. Bains, L.J., McGrath, D.M., Naish, J.H., Cheung, S., Watson, Y., Taylor, M.B., Logue, J.P., Parker, G.J., Waterton, J.C., Buckley, D.L.: Tracer kinetic analysis of dynamic contrast-enhanced MRI and CT bladder cancer data: a preliminary comparison to assess the magnitude of water exchange effects. Magn. Reson. Med. 64, 595–603 (2010)

    Google Scholar 

  26. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26, 1179–1193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Buckley, D.L., Kershaw, L.E., Stanisz, G.J.: Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: dynamic contrast-enhanced MRI of human internal obturator muscle. Magn. Reson. Med. 60, 1011–1019 (2008)

    Article  Google Scholar 

  28. Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide. Kitware, Inc., Clifton Park (2005)

    Google Scholar 

  29. Fram, E.K., Herfkens, R.J., Johnson, G.A., Glover, G.H., Karis, J.P., Shimakawa, A., Perkins, T.G., Pelc, N.J.: Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn. Reson. Imaging 5, 201–208 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Ho Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lee, S.H., Hayano, K., Sahani, D.V., Zhu, A.X., Yoshida, H. (2014). Parameter Comparison Between Fast-Water-Exchange-Limit-Constrained Standard and Water-Exchange-Modified Dual-Input Tracer Kinetic Models for DCE-MRI in Advanced Hepatocellular Carcinoma. In: Yoshida, H., Näppi, J., Saini, S. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2014. Lecture Notes in Computer Science(), vol 8676. Springer, Cham. https://doi.org/10.1007/978-3-319-13692-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13692-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13691-2

  • Online ISBN: 978-3-319-13692-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics