Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Selection of Evolutionary Algorithm Operators Based on Online Learning and Fitness Landscape Metrics

  • Conference paper
Simulated Evolution and Learning (SEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8886))

Included in the following conference series:

Abstract

Self-adaptive mechanisms for the identification of the most suitable variation operator in Evolutionary meta-heuristics rely almost exclusively on the measurement of the fitness of the offspring, which may not be sufficient to assess the optimality of an operator (e.g., in a landscape with an high degree of neutrality). This paper proposes a novel Adaptive Operator Selection mechanism which uses a set of four Fitness Landscape Analysis techniques and an online learning algorithm, Dynamic Weighted Majority, to provide more detailed informations about the search space in order to better determine the most suitable crossover operator on a set of Capacitated Arc Routing Problem (CARP) instances. Extensive comparison with a state of the art approach has proved that this technique is able to produce comparable results on the set of benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine learning 47(2-3), 235–256 (2002)

    Article  MATH  Google Scholar 

  2. Barbosa, H.J., Sá, A.: On adaptive operator probabilities in real coded genetic algorithms. In: Workshop on Advances and Trends in Artificial Intelligence for Problem Solving, SCCC 2000 (2000)

    Google Scholar 

  3. Beullens, P., Muyldermans, L., Cattrysse, D., Van Oudheusden, D.: A guided local search heuristic for the capacitated arc routing problem. European Journal of Operational Research 147(3), 629–643 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Consoli, P., Yao, X.: Diversity-driven selection of multiple crossover operators for the capacitated arc routing problem. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 97–108. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  5. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 913–920 (2008)

    Google Scholar 

  6. Davis, L.: Adapting operator probabilities in genetic algorithms. In: International Conference on Genetic Algorithms 1989, pp. 61–69 (1989)

    Google Scholar 

  7. Eglese, R.W.: Routeing winter gritting vehicles. Discrete applied mathematics 48(3), 231–244 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

    Article  Google Scholar 

  9. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits and extreme value-based rewards for adaptive operator selection in evolutionary algorithms. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 176–190. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Goldberg, D.E.: Probability matching, the magnitude of reinforcement, and classifier system bidding. Machine Learning 5(4), 407–425 (1990)

    Google Scholar 

  11. Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3), 305–315 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  13. Hinkley, D.V.: Inference about the change-point from cumulative sum tests. Biometrika 58(3), 509–523 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  14. Julstrom, B.A.: What have you done for me lately? adapting operator probabilities in a steady-state genetic algorithm. In: Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 15-19 (1995)

    Google Scholar 

  15. Kolter, J.Z., Maloof, M.: Dynamic weighted majority: A new ensemble method for tracking concept drift. In: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 123–130. IEEE (2003)

    Google Scholar 

  16. Lu, G., Li, J., Yao, X.: Fitness-probability cloud and a measure of problem hardness for evolutionary algorithms. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 108–117. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Lunacek, M., Whitley, D.: The dispersion metric and the cma evolution strategy. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 477–484. ACM (2006)

    Google Scholar 

  18. Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 256–265. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evolutionary Computation 12(3), 303–325 (2004)

    Article  MathSciNet  Google Scholar 

  20. Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Transactions on Knowledge and Data Engineering 22(5), 730–742 (2010)

    Article  Google Scholar 

  21. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation 4(3), 284–294 (2000)

    Article  Google Scholar 

  22. Schlimmer, J.C., Granger, R.H.: Beyond incremental processing: Tracking concept drift. In: AAAI, pp. 502–507 (1986)

    Google Scholar 

  23. Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search for capacitated arc routing problems. IEEE Transactions on Evolutionary Computation 13(5), 1151–1166 (2009)

    Article  Google Scholar 

  24. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1539–1546. ACM (2005)

    Google Scholar 

  25. Vanneschi, L., Pirola, Y., Collard, P.: A quantitative study of neutrality in gp boolean landscapes. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 895–902. ACM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Consoli, P.A., Minku, L.L., Yao, X. (2014). Dynamic Selection of Evolutionary Algorithm Operators Based on Online Learning and Fitness Landscape Metrics. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13563-2_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13562-5

  • Online ISBN: 978-3-319-13563-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics