Nothing Special   »   [go: up one dir, main page]

Skip to main content

A \(14k\)-Kernel for Planar Feedback Vertex Set via Region Decomposition

  • Conference paper
  • First Online:
Parameterized and Exact Computation (IPEC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8894))

Included in the following conference series:

  • 536 Accesses

Abstract

We show a kernel of at most \(14k\) vertices for the Planar Feedback Vertex Set problem. This improves over the previous kernel of size bounded by \(97k\). Our algorithm has a few new reduction rules. However, our main contribution is an application of the region decomposition technique in the analysis of the kernel size.

Work partially supported by the ANR Grant EGOS (2012–2015) 12 JS02 002 01 (MB) and by the National Science Centre of Poland, grant number UMO-2013/09/B/ST6/03136 (ŁK).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Bou Khuzam, M.: An improved kernel for the undirected planar feedback vertex set problem. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 264–273. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bodlaender, H.L., Penninkx, E.: A linear kernel for planar feedback vertex set. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosamond, F.A.: The undirected feedback vertex set problem has a poly(k) kernel. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 192–202. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Festa, P., Pardalos, P., Resende, M.: Feedback Set Problems. Encyclopedia of Optimization, pp. 1005–1016. Springer, New York (2009)

    Google Scholar 

  7. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: SODA, pp. 503–510 (2010)

    Google Scholar 

  8. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  9. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts, 8th edn. Wiley Publishing, New York (2008)

    Google Scholar 

  10. Thomassé, S.: A \(4k^2\) kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 1–8 (2010)

    Article  MathSciNet  Google Scholar 

  11. Xiao, M.: A new linear kernel for undirected planar feedback vertex set: smaller and simpler. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 288–298. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Kowalik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bonamy, M., Kowalik, Ł. (2014). A \(14k\)-Kernel for Planar Feedback Vertex Set via Region Decomposition. In: Cygan, M., Heggernes, P. (eds) Parameterized and Exact Computation. IPEC 2014. Lecture Notes in Computer Science(), vol 8894. Springer, Cham. https://doi.org/10.1007/978-3-319-13524-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13524-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13523-6

  • Online ISBN: 978-3-319-13524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics