Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exact Exponential Algorithms to Find a Tropical Connected Set of Minimum Size

  • Conference paper
  • First Online:
Parameterized and Exact Computation (IPEC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8894))

Included in the following conference series:

Abstract

The input of the Tropical Connected Set problem is a vertex-colored graph \(G=(V,E)\) and the task is to find a connected subset \(S\subseteq V\) of minimum size such that each color of \(G\) appears in \(S\). This problem is known to be NP-complete, even when restricted to trees of height at most three. We show that Tropical Connected Set on trees has no subexponential-time algorithm unless the Exponential Time Hypothesis fails. This motivates the study of exact exponential algorithms to solve Tropical Connected Set. We present an \(\mathcal {O}^*(1.5359^n)\) time algorithm for general graphs and an \(\mathcal {O}^*(1.2721^n)\) time algorithm for trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Mouawad, A.E., Liedloff, M.: An exact algorithm for connected red-blue dominating set. J. Discret. Algorithm. 9(3), 252–262 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambalath, A.M., Balasundaram, R., Rao H., C., Koppula, V., Misra, N., Philip, G., Ramanujan, M.S.: On the kernelization complexity of colorful motifs. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 14–25. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Angles D’Auriac, J.-A., Cohen, N., El Maftouhi, A., Harutyunyan, A., Legay, S., Manoussakis, Y.: Connected tropical subgraphs in vertex-colored graphs. http://people.maths.ox.ac.uk/harutyunyan/Tropical%20sets.pdf

  4. Betzler, N., Van Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithmics for finding connected motifs in biological networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(5), 1296–1308 (2011)

    Article  Google Scholar 

  5. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. J. Comput. Biol. 17(3), 237–252 (2010)

    Article  MathSciNet  Google Scholar 

  6. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Demaine, E.D., Hajiaghayi, M.T.: The bidimensionality theory and its algorithmic applications. Comput. J. 51, 292–302 (2008)

    Article  Google Scholar 

  8. Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertex-colored graph pattern matching. J. Discret. Algorithm. 9(1), 82–99 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  12. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (Exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Fomin, F.V., Thilikos, D.M.: A simple and fast approach for solving problems on planar graphs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 56–67. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorithmica 65(4), 828–844 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput/Syst. Sci. 62, 367–375 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 3(4), 360–368 (2006)

    Article  Google Scholar 

  17. McMorris, F., Warnow, T., Wimer, T.: Triangulating vertex-colored graphs. SIAM J. Discret. Math. 7, 296–306 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nederlof, J.: Fast polynomial-space algorithms using Inclusion-Exclusion. Algorithmica 65, 868–884 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13, 133–144 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Kratsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chapelle, M., Cochefert, M., Kratsch, D., Letourneur, R., Liedloff, M. (2014). Exact Exponential Algorithms to Find a Tropical Connected Set of Minimum Size. In: Cygan, M., Heggernes, P. (eds) Parameterized and Exact Computation. IPEC 2014. Lecture Notes in Computer Science(), vol 8894. Springer, Cham. https://doi.org/10.1007/978-3-319-13524-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13524-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13523-6

  • Online ISBN: 978-3-319-13524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics