Abstract
Personalized search has recently attracted increasing attention. This paper focuses on utilizing click-through data to personalize the web search results, from a novel perspective based on subspace projection. Specifically, we represent a user profile as a vector subspace spanned by a basis generated from a word-correlation matrix, which is able to capture the dependencies between words in the “satisfied click” (SAT Click) documents. A personalized score for each document in the original result list returned by a search engine is computed by projecting the document (represented as a vector or another word-correlation subspace) onto the user profile subspace. The personalized scores are then used to re-rank the documents through the Borda’ ranking fusion method. Empirical evaluation is carried out on a real user log data set collected from a prominent search engine (Bing). Experimental results demonstrate the effectiveness of our methods, especially for the queries with high click entropy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Melucci, M.: A Basis for Information Retrieval in Context. ACM Transactions on Information Systems (TOIS) 26(3), 14 (2008)
Dou, Z., Song, R., Wen, J.R.: A large-scale Evaluation and Analysis of Personalized Search Strategies. In: WWW, pp. 581–590 (2007)
Teevan, J., Dumais, S.T., Horvitz, E.: Potential for Personalization. ACM Transactions on Computer-Human Interaction (TOCHI) 17(1), 4 (2010)
Bennett, P.N., Radlinski, F., White, R.W., Yilmaz, E.: Inferring and using Location Metadata to Personalize Web Search. In: SIGIR, pp. 135–144 (2011)
Sontag, D., Collins-Thompson, K., Bennett, P.N., White, R.W., Dumais, S., Billerbeck, B.: Probabilistic Models for Personalizing Web Search. In: WSDM, pp. 433–442 (2012)
White, R.W., Bennett, P.N., Dumais, S.T.: Predicting Short-term Interests using Activity-based Search Context. In: CIKM, pp. 1009–1018 (2010)
Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., Li, H.: Context-aware Ranking in Web Search. In: SIGIR, pp. 451–458 (2010)
Agichtein, E., Brill, E., Dumais, S.: Improving Web Search Ranking by Incorporating User Behavior Information. In: SIGIR, pp. 19–26 (2006)
Zhang, S., Dong, N.: An Effective Combination of Different Order N-grams. In: Proceedings of O-COCOSDA, pp. 251–256 (2003)
Bennett, P.N., White, R.W., Chu, W., Dumais, S.T., Bailey, P., Borisyuk, F., Cui, X.: Modeling the Impact of Short-and Long-term Behavior on Search Personalization. In: SIGIR, pp. 185–194 (2012)
Golub, G., Loan, C.V.: Matrix Computation, 2nd edn. The Johns Hopkins University Press, Baltimore (1989)
Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring Folksonomy for Personalized Search. In: SIGIR, pp. 155–162. ACM (2008)
Sun, J.T., Zeng, H.J., Liu, H., Lu, Y., Chen, Z.: CubeSVD: A Novel approach to Personalized Web Search, pp. 382–390 (2005)
Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Methods for the Web, pp. 613–622 (2001)
Melucci, M.: Context Modeling and Discovery using Vector Space Bases. In: CIKM, pp. 808–815 (2005)
Melucci, M., White, R.W.: Utilizing a Geometry of Context for Enhanced Implicit Feedback. In: CIKM, pp. 273–282 (2007)
Van, R., Cornelis, J.: The Geometry of Information Retrieval. The Cambridge University Press (2004)
Porter, M.F.: An Algorithm for Suffix Stripping, Program 14(3), 130–137 (1980)
Zhai, C., Lafferty, J.: A Study of Smoothing Methods for Language Models applied to ad hoc Information Retrieval. In: SIGIR, pp. 334–342 (2001)
Collins-Thompson, K., Bennett, P.N., White, R.W., de la Chica, S., Sontag, D.: Personalizing Web Search Results by Reading Level. In: CIKM, pp. 403–412 (2011)
Nanas, N., Vavalis, M., De Roeck, A.N.: A Network-based Model for High-dimensional Information Filtering. In: SIGIR, pp. 202–209 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, J., Song, D., Zhang, P., Wen, JR., Dou, Z. (2014). Personalizing Web Search Results Based on Subspace Projection. In: Jaafar, A., et al. Information Retrieval Technology. AIRS 2014. Lecture Notes in Computer Science, vol 8870. Springer, Cham. https://doi.org/10.1007/978-3-319-12844-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-12844-3_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12843-6
Online ISBN: 978-3-319-12844-3
eBook Packages: Computer ScienceComputer Science (R0)