Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-resolution Shape-Based Image Retrieval Using Ridgelet Transform

  • Conference paper
Information Retrieval Technology (AIRS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8870))

Included in the following conference series:

Abstract

Complicated shapes can be effectively characterized using multi-resolution descriptors. One popular method is the Ridgelet transform which has enjoyed very little exposure in describing shapes for Content-based Image Retrieval (CBIR). Many of the existing Ridgelet transforms are only applied on images of size M×M. For M×N sized images, they need to be segmented into M×M sub-images prior to processing. A different number of orientations and cut-off points for the Radon transform parameters also need to be utilized according to the image size. This paper presents a new shape descriptor for CBIR based on Ridgelet transform which is able to handle images of various sizes. The utilization of the ellipse template for better image coverage and the normalization of the Ridgelet transform are introduced. For better retrieval, a template-option scheme is also introduced. Retrieval effectiveness obtained by the proposed method has shown to be higher compared to several previous descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hare, J.S., Sinclair, P.A.S., Lewis, P.H., Martinez, K., Enser, P.G.B., Sandom, C.J.: Bridging the Semantic Gap in Multimedia Information Retrieval: Top-down and Bottom-up Approaches. In: 3rd Annual European Semantic Web Conference (2006)

    Google Scholar 

  2. Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)

    Article  Google Scholar 

  3. Wang, X., Feng, B., Bai, X., Liu, W., Latecki, L.J.: Bag of Contour Fragments for Robust Shape Classification. Pattern Recognition 47(6), 2116–2125 (2014)

    Article  Google Scholar 

  4. Arslan, S., Ozyurek, E., Gunduz-Demir, C.: A Color and Shape-based Algorithm for Segmentation of White Blood Cells in Peripheral Blood and Bone Marrow Images. Cytometry Part A (2014)

    Google Scholar 

  5. Costa, L.D.F.D., Cesar Jr., R.M.: Shape Analysis and Classification: Theory and Practice. CRC Press LLC, Boca Raton (2001)

    Google Scholar 

  6. Koenderink, J.J.: The Structure of Images. Biological Cybernetics 50(5), 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, G.Y., Bui, T.D., Krzyżak, A.: Rotation Invariant Feature Extraction using Ridgelet and Fourier Transforms. Pattern Analysis and Applications 9(1), 83–93 (2006)

    Article  MathSciNet  Google Scholar 

  8. Wang, X.R., Yang, Y.F.: Medical Image Retrieval based on Simplified Multi-Wavelet Transform and Shape Feature. Applied Mechanics and Materials 513, 2871–2875 (2014)

    Article  Google Scholar 

  9. Candès, E.J., Donoho, D.L.: Curvelets - A Surprisingly Effective Non-adaptive Representation for Objects with Edges. In: Rabut, C., Cohen, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 105–120. Vanderbilt University Press, Nashville (2000)

    Google Scholar 

  10. Candès, E.J., Donoho, D.L.: Ridgelets: A Key to Higher-dimensional Intermittency? Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357(1760), 2495–2509 (1999)

    MATH  MathSciNet  Google Scholar 

  11. Do, M.N., Vetterli, M.: The Contourlet Transform: An Efficient Directional Multi-resolution Image Representation. IEEE Transactions on Image Processing 14(12), 2091–2106 (2005)

    Article  MathSciNet  Google Scholar 

  12. Huang, K., Aviyente, S.: Rotation Invariant Texture Classification with Ridgelet Transform and Fourier Transform. In: 2006 IEEE International Conference on Image Processing, pp. 2141–2144 (2006)

    Google Scholar 

  13. Mas Rina, M., Fatimah, A., Ramlan, M., Shyamala, C.D.: Generalized Ridgelet Fourier for M×N Images: Determining the Normalization Criteria. In: Ming, L.S. (ed.) IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, pp. 380–384. IEEE (2009)

    Google Scholar 

  14. Zhu, L.Q., Zhang, S.Y.: Multimodal Biometric Identification System based on Finger Geometry, Knuckle Print, and Palm Print. Pattern Recognition Letters 31(12), 1641–1649 (2010)

    Article  Google Scholar 

  15. Mitchell, H.B.: Image Fusion: Theories, Techniques, and Applications. Springer, Heidelberg (2010)

    Google Scholar 

  16. Latecki, L.J., Lakamper, R., Eckhardt, T.: Shape Descriptors for nNon-rigid Shapes with a Single Closed Contour. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 424–429. IEEE (2000)

    Google Scholar 

  17. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  18. Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and Texture Descriptors. IEEE Transactions on Circuits and Systems for Video Technology 11(6), 703–715 (2001)

    Article  Google Scholar 

  19. Park, J., An, Y., Jeong, I., Kang, G., Pankoo, K.: Image Indexing using Spatial Multi-resolution Color Correlogram. In: IEEE International Workshop on Imaging Systems and Techniques, pp. 1–4. IEEE (2007)

    Google Scholar 

  20. Mann, P.S.: Introductory Statistics, 7th edn. John Wiley & Sons, Hoboken (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mustaffa, M.R., Ahmad, F., Doraisamy, S. (2014). Multi-resolution Shape-Based Image Retrieval Using Ridgelet Transform. In: Jaafar, A., et al. Information Retrieval Technology. AIRS 2014. Lecture Notes in Computer Science, vol 8870. Springer, Cham. https://doi.org/10.1007/978-3-319-12844-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12844-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12843-6

  • Online ISBN: 978-3-319-12844-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics