Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mixed Degree-Degree Correlations in Directed Social Networks

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8881))

Abstract

Many complex networks exhibit homophilic, or assortative degree mixing–the tendency for networked nodes to connect with others of similar degree. For social networks, this phenomenon is often referred to colloquially by the mantra ‘your friends have more friends than you do.’ We analyzed datasets for 16 directed social networks, and report that some of them exhibit both assortative (positive correlations) and disassortative (negative correlations) degree mixing across the totality of their degrees. We show that this mixed trend can be predicted based on the value of Pearson correlations computed for the directed networks. This stands in contrast to previous results reported for social networks that mark them as purely assortative. Finally, we discuss mechanisms by which these trends emerge from random models of network creation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albert, R., Jeong, H., Barabasi, A.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  3. Bagler, G., Sinha, S.: Assortative mixing in protein contact networks and protein folding kinetics. Bioinformatics 23, 1760–1767 (2007)

    Article  Google Scholar 

  4. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Barabasi, A., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173–187 (1999)

    Article  Google Scholar 

  6. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101, 3747 (2004)

    Article  Google Scholar 

  7. Bollen, J., Gonalvesj, B., Ruan, G., Mao, H.: Happiness is assortative in online social networks. Artif. Life 17, 237–251 (2011)

    Article  Google Scholar 

  8. Brede, M., Sinha, S.: Assortative mixing by degree makes a network more unstable. arXiv preprint cond-mat, p. 0507710 (2005)

    Google Scholar 

  9. Capocci, A., Servedio, V., Colaiori, F., Buriol, L., Donato, D., Leonardi, S., Caldarelli, G.: Preferential attachment in the growth of social networks: The internet encyclopedia wikipedia. Phys. Rev. E 74, 036116 (2006)

    Article  Google Scholar 

  10. Catanzaro, M., Bogu, M., Pastor-Satorras, R.: Generation of uncorrelated random scale-free networks. Phys. Rev. E 71, 027103 (2005)

    Article  Google Scholar 

  11. Croft, D., James, R., Ward, A., Botham, M., Mawdsley, D., Krause, J.: Assortative interactions and social networks in fish. Oecologia 143, 211–219 (2005)

    Article  Google Scholar 

  12. Feld, S.: Why your friends have more friends than you do. Am. J. Sociol. 96, 1464–1477 (1991)

    Article  Google Scholar 

  13. Foster, J., Foster, D., Grassberger, P., Paczuski, M.: Edge direction and the structure of networks. Proc. Natl. Acad. Sci. U.S.A 107, 10815–10820 (2010)

    Article  Google Scholar 

  14. Fowler, J., Settle, J., Christakis, N.: Correlated genotypes in friendship networks. Proc. Natl. Acad. Sci. U.S.A. 108, 1993–1997 (2011)

    Article  Google Scholar 

  15. Gehrke, J., Ginsparg, P., Kleinberg, J.M.: Overview of the 2003 kdd cup. ACM SIGKDD Newsl. 5, 149–151 (2003)

    Article  Google Scholar 

  16. Holme, P., Kim, B., Yoon, C., Han, S.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)

    Article  Google Scholar 

  17. Hu, H., Wang, X.: Disassortative mixing in online social networks. Europhys. Lett. 86, 18003 (2009)

    Article  Google Scholar 

  18. Isalan, M., Lemerle, C., Michalodimitrakis, K., Horn, C., Beltrao, P., Raineri, E., Garriga-Canut, M., Serrano, L.: Evolvability and hierarchy in rewired bacterial gene networks. Nature 452, 840 (2008)

    Article  Google Scholar 

  19. Johnson, S., Torres, J., Marro, J., Munoz, M.: Entropic origin of disassortativity in complex networks. Phys. Rev. Lett. 104, 108702 (2010)

    Article  Google Scholar 

  20. Leskovec, J., Adamic, L., Adamic, B.: The dynamics of viral marketing. ACM Trans. Web 1, 5 (2007)

    Article  Google Scholar 

  21. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World wide web, pp. 641–650. ACM (2010)

    Google Scholar 

  22. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM (2010)

    Google Scholar 

  23. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM (2005)

    Google Scholar 

  24. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1, 2 (2007)

    Article  Google Scholar 

  25. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6, 29–123 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Litvak, N., van der Hofstad, R.: Uncovering disassortativity in large scale-free networks. Phys. Rev. E 87, 022801 (2013)

    Article  Google Scholar 

  27. Lusseau, D., Newman, M.: Identifying the role that animals play in their social networks. P. Roy. Soc. B-Biol. Sci. 271, S477–S481 (2004)

    Article  Google Scholar 

  28. Maslov, S., Sneppen, K., Zaliznyak, A.: Detection of topological patterns in complex networks: Correlation properties of the internet. Physica A 333, 529–540 (2004)

    Article  Google Scholar 

  29. Massa, P., Salvetti, M., Tomasoni, D.: Bowling alone and trust decline in social network sites. In: Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, 2009. DASC ’09, pp. 658–663. IEEE (2009)

    Google Scholar 

  30. McPherson, M., Smith-Lovin, L., Cook, J.: Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001)

    Article  Google Scholar 

  31. Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. pp. 29–42. ACM (2007)

    Google Scholar 

  32. Newman, M.: Scientific collaboration networks I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001)

    Article  Google Scholar 

  33. Newman, M.: Scientific collaboration networks II. shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)

    Article  Google Scholar 

  34. Newman, M.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U.S.A. 98, 404–409 (2001)

    Article  MATH  Google Scholar 

  35. Newman, M.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002)

    Article  Google Scholar 

  36. Newman, M.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003)

    Article  MathSciNet  Google Scholar 

  37. Newman, M., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E 68, 036122 (2003)

    Article  Google Scholar 

  38. Park, J., Newman, M.: Origin of degree correlations in the internet and other networks. Phys. Rev. E 68, 026112 (2003)

    Article  Google Scholar 

  39. Piraveenan, M., Prokopenko, M., Zomaya, A.: Assortative mixing in directed biological networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 9, 66–78 (2012)

    Article  Google Scholar 

  40. Ramasco, J., Dorogovtsev, S., Pastor-Satorras, R.: Self-organization of collaboration networks. Phys. Rev. E 70, 036106 (2004)

    Article  Google Scholar 

  41. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  42. Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., Muiz-Rascado, L., Garca-Sotelo, J.S., Weiss, V., Solano-Lira, H., Martnez-Flores, I., Medina-Rivera, A., Salgado-Osorio, G., Alquicira-Hernndez, S., Alquicira-Hernndez, K., Lpez-Fuentes, A., Porrn-Sotelo, L., Huerta, A.M., Bonavides-Martnez, C., Balderas-Martnez, Y.I., Pannier, L., Olvera, M., Labastida, A., Jimnez-Jacinto, V., Vega-Alvarado, L., del Moral-Chvez, V., Hernndez-Alvarez, A., Morett, E., Collado-Vides, J.: Regulondb v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res. 41(D1), D203–D213 (2013)

    Article  Google Scholar 

  43. Serrano, M., Maguitman, A., Bogu, M., Fortunato, S., Vespignani, A.: Decoding the structure of the www: A comparative analysis of web crawls. ACM Trans. Web 1, 10 (2007)

    Article  Google Scholar 

  44. Sorrentino, F., Bernardo, M.D., Garofalo, F.: Synchronizability and synchronization dynamics of weighed and unweighed scale free networks with degree mixing. Int. J. Bifurcat. Chaos 17, 2419–2434 (2007)

    Article  MATH  Google Scholar 

  45. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Social Networks (WOSN’09) (August 2009)

    Google Scholar 

  46. Vazquez, A.: Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67, 056104 (2003)

    Article  Google Scholar 

  47. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the US Army’s Environmental Quality and Installations 6.1 basic research program. Opinions, interpretations, conclusions, and recommendations are those of the author(s) and are not necessarily endorsed by the U.S. Army.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mayo, M., Abdelzaher, A., Ghosh, P. (2014). Mixed Degree-Degree Correlations in Directed Social Networks. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12691-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12690-6

  • Online ISBN: 978-3-319-12691-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics