Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Generalized 3-Edge-Connectivity of Lexicographic Product Graphs

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8881))

Abstract

The generalized \(k\)-edge-connectivity \(\lambda _k(G)\) of a graph \(G\) is a natural generalization of the concept of edge-connectivity. The generalized edge-connectivity has many applications in networks. The lexicographic product of two graphs \(G\) and \(H\), denoted by \(G\circ H\), is an important method to construct large graphs from small ones. In this paper, we mainly study the generalized 3-edge-connectivity of \(G \circ H\), and get lower and upper bounds of \(\lambda _3(G \circ H)\). An example is given to show that all bounds are sharp.

Supported by NSFC No. 11371205 and PCSIRT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barden, B., Libeskind-Hadas, R., Davis, J., Williams, W.: On edge-disjoint spanning trees in hypercubes. Infor. Proces. Lett. 70, 13–16 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beineke, L.W., Wilson, R.J.: Topics in Structural Graph Theory. Cambrige University Press, Cambrige (2013)

    MATH  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph Theory. GTM 244. Springer, Berlin (2008)

    Book  Google Scholar 

  4. Brešar, B., Špacapan, S.: Edge connectivity of strong products of graphs. Discuss. Math. Graph Theory 27, 333–343 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chartrand, G., Okamoto, F., Zhang, P.: Rainbow trees in graphs and generalized connectivity. Networks 55(4), 360–367 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Cheng, X., Du, D.: Steiner Trees in Industry. Kluwer Academic Publisher, Dordrecht (2001)

    Google Scholar 

  7. Du, D., Hu, X.: Steiner Tree Problems in Computer Communication Networks. World Scientific, River Edge (2008)

    Book  MATH  Google Scholar 

  8. Feng, M., Xu, M., Wang, K.: Identifying codes of lexicographic product of graphs. Electron. J. Comb. 19(4), 56–63 (2012)

    MathSciNet  Google Scholar 

  9. Grötschel, M.: The Steiner tree packing problem in \(VLSI\) design. Math. Program. 78, 265–281 (1997)

    Article  MATH  Google Scholar 

  10. Hammack, R., Imrich, W., Klavz̆ar, S.: Handbook of Product Graphs, 2nd edn. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  11. Hager, M.: Pendant tree-connectivity. J. Combin. Theory 38, 179–189 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Imrich, W., Klavžar, S.: Product Graphs: Structure and Recognition. Wiley, New York (2000)

    Google Scholar 

  13. Klavžar, S., Špacapan, S.: On the edge-connectivity of Cartesian product graphs. Asian-Europ. J. Math. 1, 93–98 (2008)

    Article  MATH  Google Scholar 

  14. Ku, S., Wang, B., Hung, T.: Constructing edge-disjoint spanning trees in product networks. IEEE Trans. Parallel Distrib. Syst. 14(3), 213–221 (2003)

    Article  Google Scholar 

  15. Li, F., Xu, Z., Zhao, H., Wang, W.: On the number of spanning trees of the lexicographic product of networks. Sci. China Ser. F 42, 949–959 (2012)

    Google Scholar 

  16. Li, H., Li, X., Sun, Y.: The generalied 3-connectivity of Cartesian product graphs. Discrete Math. Theor. Comput. Sci. 14(1), 43–54 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, H., Li, X., Mao, Y.: On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices. Bull. Malays. Math. Sci. Soc. 37(2,3), 747–756 (2014)

    Google Scholar 

  18. Li, S., Li, X., Zhou, W.: Sharp bounds for the generalized connectivity \(\kappa _3(G)\). Discrete Math. 310, 2147–2163 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, S., Li, W., Li, X.: The generalized connectivity of complete equipartition \(3\)-partite graphs. Bull. Malays. Math. Sci. Soc. 37(1,2), 103–121 (2014)

    Google Scholar 

  20. Li, X., Mao, Y.: The generalized 3-connectivity of lexicographic product graphs. Discrete Math. Theor. Comput. Sci. 16(1), 339–354 (2014)

    MATH  MathSciNet  Google Scholar 

  21. Li, X., Mao, Y.: The minimal size of a graph with given generalized 3-edge-connectivity. Accepted for publication in Ars Comb

    Google Scholar 

  22. Li, X., Mao, Y., Sun, Y.: On the generalized (edge-)connectivity of graphs. Austral. J. Comb. 58, 304–319 (2014)

    MATH  MathSciNet  Google Scholar 

  23. Nash Williams, CStJA: Edge-disjonint spanning trees of finite graphs. J. London Math. Soc. 36, 445–450 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oellermann, O.R.: Connectivity and edge-connectivity in graphs: a survey. Cong. Numer. 116, 231–252 (1996)

    MATH  MathSciNet  Google Scholar 

  25. Ozeki, K., Yamashita, T.: Spanning trees: a survey. Graphs Combin. 27(1), 1–26 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Palmer, E.: On the spanning tree packing number of a graph: a survey. Discrete Math. 230, 13–21 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sherwani, N.: Algorithms for \(VLSI\) Physical Design Automation, 3rd edn. Kluwer Academic Publishers, London (1999)

    MATH  Google Scholar 

  28. Sun, Y.: Generalized 3-edge-connectivity of Cartesian product graphs. Accepted for publication in Czech. Math. J.

    Google Scholar 

  29. Tutte, W.: On the problem of decomposing a graph into \(n\) connected factors. J. London Math. Soc. 36, 221–230 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  30. Volkmann, L.: Edge connectivity in \(p\)-partite graphs. J. Graph Theory 13(1), 1–6 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. West, D., Wu, H.: Packing Steiner trees and \(S\)-connectors in graphs. J. Comb. Theory Ser. B 102, 186–205 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Xu, J., Yang, C.: Connectivity of Cartesian product graphs. Discrete Math. 306, 159–165 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yang, C., Xu, J.: Connectivity of lexicographic product and direct product of graphs. Ars Comb. 111, 3–12 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, X., Yue, J., Zhao, Y. (2014). The Generalized 3-Edge-Connectivity of Lexicographic Product Graphs. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12691-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12690-6

  • Online ISBN: 978-3-319-12691-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics