Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Nodes Reduction Procedure for RBFNDDA through Histogram

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8834))

Included in the following conference series:

  • 4899 Accesses

Abstract

This paper presents a two-stage learning algorithm to reduce the hidden nodes of a radial basis function network (RBFN). The first stage involves the construction of an RBFN using the dynamic decay adjustment (DDA) and the second stage involves the use of a modified histogram algorithm (HIST) to reduce hidden neurons. DDA enables the RBFN to perform constructive learning without pre-defining the number of hidden nodes. The learning process of DDA is fast but it tends to generate a large network architecture as a result of its greedy insertion behavior. Therefore, an RBFNDDA-HIST is proposed to reduce the nodes. The proposed RBFNDDA-HIST is tested with three benchmark medical datasets. The experimental results show that the accuracy of the RBFNDDA-HIST is compatible with to that of RBFNDDA but with less number of nodes. This proposed network is favorable in a real environment because the computation cost can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Meng Joo, E., Shiqian, W., Juwei, L.: Face recognition using radial basis function (RBF) neural networks. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3, pp. 2162–2167 (1999)

    Google Scholar 

  2. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Computation 1(2), 281–294 (1989)

    Article  Google Scholar 

  3. Guang-Bin, H., Saratchandran, P., Sundararajan, N.: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks 16(1), 57–67 (2005)

    Article  Google Scholar 

  4. Kang, L., Jian-Xun, P., Er-Wei, B.: Two-stage mixed discrete-continuous identification of Radial Basis Function (RBF) Neural models for nonlinear systems. IEEE Transactions on Circuits and Systems I: Regular Papers 56(3), 630–643 (2009)

    Article  MathSciNet  Google Scholar 

  5. Freeman, J.A.S., Saad, D.: Learning and generalization in radial basis function networks. Neural Computation 7(5), 1000–1020 (1995)

    Article  Google Scholar 

  6. Yu, H.: Network complexity analysis of multilayer feedforward artificial neural networks. In: Schumann, J., Liu, Y. (eds.) Appl. of Neural Networks in High Assur. Sys. SCI, vol. 268, pp. 41–55. Springer, Heidelberg (2010)

    Google Scholar 

  7. Zhang, G.P.: Avoiding pitfalls in neural network research. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(1), 3–16 (2007)

    Article  Google Scholar 

  8. Reed, R.: Pruning algorithms-a survey. IEEE Transactions on Neural Networks 4(5), 740–747 (1993)

    Article  Google Scholar 

  9. Karnin, E.D.: A simple procedure for pruning back-propagation trained neural networks. IEEE Transactions on Neural Networks 1(2), 239–242 (1990)

    Article  Google Scholar 

  10. Augasta, M.G., Kathirvalavakumar, T.: A novel pruning algorithm for optimizing feedforward neural network of classification problems. Neural Processing Letters 34(3), 241–258 (2011)

    Article  Google Scholar 

  11. Ioannidis, Y.: The histogry of histogram. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp. 19–30 (2003)

    Google Scholar 

  12. Legg, P.A., Rosin, P.L., Marshall, D., Morgan, J.E.: Improving accuracy and efficiency of registration by mutual information using Sturges’ histogram rule. In: Medical Image Understanding and Analysis, pp. 26–30 (2007)

    Google Scholar 

  13. Sietsma, J., Dow, R.J.F.: Neural net pruning-why and how. In: IEEE International Conference on Neural Networks, vol. 1, pp. 325–333 (1988)

    Google Scholar 

  14. Liang, X.: Removal of hidden neurons in multilayer perceptrons by orthogonal projection and weight crosswise propagation. Neural Computing and Applications 16(1), 57–68 (2007)

    Article  Google Scholar 

  15. Zhang, Z., Qiao, J.: A node pruning algorithm for feedforward neural network based on neural complexity. In: 2010 International Conference on Intelligent Control and Information Processing (ICICIP), pp. 406–410 (2010)

    Google Scholar 

  16. Shimazaki, H., Shinomoto, S.: A method for selecting the bin size of a time histogram. Journal of Neural Computation 19(6), 1503–1527 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Asunction, A., Newman, D.J.: No Title. University of California, School of Information and Computer Science, Irvine, CA (2007)

    Google Scholar 

  18. Paetz, J.: Reducing the number of neurons in radial basis function networks with dynamic decay adjustment. Neurocomputing 62, 79–91 (2004)

    Article  Google Scholar 

  19. Abbass, H.A.: An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine 25(3), 265–281 (2002)

    Article  Google Scholar 

  20. Fogel, D.B., Wasson III, E.C., Boughton, E.M.: Evolving neural networks for detecting breast cancer. Cancer Letters 96(1), 49–53 (1995)

    Article  Google Scholar 

  21. Abbass, H.A., Towsey, M., Finn, G.: C-Net: A method for generating non-deterministic and dynamic multivariate decision trees. Knowledge and Information Systems 3(2), 184–197 (2001)

    Article  MATH  Google Scholar 

  22. Pylkkonen, J.: New pruning criteria for efficient decoding. In: Proceedings of the 9th European Conference on Speech Communication and Technology, pp. 581–584 (2005)

    Google Scholar 

  23. Steinbiss, V., Tran, B.H., Ney, H.: Improvement in beam search. In: International Conference on Spoken Language Processing, pp. 2143–2146 (1994)

    Google Scholar 

  24. Berthold, M.R., Diamond, J.: Constructive training of probabilistic neural networks. Neurocomputing 19, 167–183 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Goh, P.Y., Tan, S.C., Cheah, W.P. (2014). A Nodes Reduction Procedure for RBFNDDA through Histogram. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8834. Springer, Cham. https://doi.org/10.1007/978-3-319-12637-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12637-1_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12636-4

  • Online ISBN: 978-3-319-12637-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics