Nothing Special   »   [go: up one dir, main page]

Skip to main content

Distributedly Testing Cycle-Freeness

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 8747))

Included in the following conference series:

Abstract

We tackle local distributed testing of graph properties. This framework is well suited to contexts in which data dispersed among the nodes of a network can be collected by some central authority (like in, e.g., sensor networks). In local distributed testing, each node can provide the central authority with just a few information about what it perceives from its neighboring environment, and, based on the collected information, the central authority is aiming at deciding whether or not the network satisfies some property. We analyze in depth the prominent example of checking cycle-freeness, and establish tight bounds on the amount of information to be transferred by each node to the central authority for deciding cycle-freeness. In particular, we show that distributedly testing cycle-freeness requires at least \(\lceil \log d \rceil -1\) bits of information per node in graphs with maximum degree \(d\), even for connected graphs. Our proof is based on a novel version of the seminal result by Naor and Stockmeyer (1995) enabling to reduce the study of certain kinds of algorithms to order-invariant algorithms, and on an appropriate use of the known fact that every free group can be linearly ordered.

Pierre Fraigniaud: The first and second authors receive support from the ANR project DISPLEXITY, and from the INRIA project GANG.

David Ilcinkas: Partially supported by the ANR project DISPLEXITY. This study was carried out in the frame of the program “investment for the future” of Idex Bordeaux-CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To see why, assume there exists a local algorithm \(\mathcal {A} \) deciding cycle-freeness locally. Run \(\mathcal {A} \) on the path with consecutive identities from 1 to \(n\) (nodes with identities 1 and \(n\) being the two extremities). In this configuration, the \(n/2\) middle nodes output “true”. Then, run \(\mathcal {A} \) on the same path with identities \(n/2,\ldots ,n,1,\ldots ,n/2-1\). Again, the \(n/2\) middle nodes output “true”. Therefore, on the cycle with consecutive identities from 1 to \(n\), all nodes output “true”, yielding \(\mathcal {A} \) to accept the cycle, a contradiction.

References

  1. Alon, N.: Subdivided graphs have linear ramsey numbers. J. Graph Theor. 18(4), 343–347 (1994)

    Article  MATH  Google Scholar 

  2. Alon, N., Shapira, A.: A characterization of easily testable induced subgraphs. Comb. Probab. Comput. 15(6), 791–805 (2006)

    Article  MathSciNet  Google Scholar 

  3. Arfaoui, H., Fraigniaud, P., Pelc, A.: Local decision and verification with bounded-size outputs. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 133–147. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Becker, F., Kosowski, A., Nisse, N., Rapaport, I., Suchan, K.: Allowing each node to communicate only once in a distributed system: shared whiteboard models. In: Proceediings 24th ACM Sympsium on Parallelism in Algorithms and Architectures (SPAA), pp. 11–17 (2012)

    Google Scholar 

  5. Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Adding a referee to an interconnection network: what can(not) be computed in one round. In: Proceedings 25th IEEE International Sympusim on Parallel and Distributed Processing (IPDPS), pp. 508–514 (2011)

    Google Scholar 

  6. Corneil, D., Lerchs, H., Burlingham, L.: Complement reducible graphs. Discrete Appl. Math. 3(3), 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(13), 77–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Czumaj, A., Goldreich, O., Ron, D., Seshadhri, C., Shapira, A., Sohler, C.: Finding cycles and trees in sublinear time. Electron. Colloq. Comput. Complex. (ECCC) 19, 35 (2012)

    Google Scholar 

  9. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabilization. Acta Inf. 36(6), 447–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally without identifiers? In: Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 157–165 (2013)

    Google Scholar 

  11. Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized distributed decision. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 371–385. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 708–717 (2011)

    Google Scholar 

  13. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM 60(5), 35 (2013)

    Article  MathSciNet  Google Scholar 

  14. Goldreich, O. (ed.): Property Testing. LNCS, vol. 6390. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  15. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32(2), 302–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. J. ACM 60(5), 39 (2013)

    Article  MathSciNet  Google Scholar 

  17. Göös, M., Suomela, J.: Locally checkable proofs. In: Proceedings of the 30th ACM Sympusim on Principles of Distributed Computing (PODC), pp. 159–168 (2011)

    Google Scholar 

  18. Itkis, G., Levin, L.A.: Fast and lean self-stabilizing asynchronous protocols. In: 35th IEEE Sympsium on Foundations of Computer Science (FOCS), pp. 226–239 (1994)

    Google Scholar 

  19. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)

    Article  MATH  Google Scholar 

  20. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Fraigniaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F. (2014). Distributedly Testing Cycle-Freeness. In: Kratsch, D., Todinca, I. (eds) Graph-Theoretic Concepts in Computer Science. WG 2014. Lecture Notes in Computer Science, vol 8747. Springer, Cham. https://doi.org/10.1007/978-3-319-12340-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12340-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12339-4

  • Online ISBN: 978-3-319-12340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics